Fast Responding, 45-dB Range 500 MHz to 40 GHz Power Detector

Preliminary Technical Data

FEATURES

State-of-the-Art Broadband Detector Technology
Schottky Diode Front End with on-Chip Linearization
Broadband 50 ohm Input Impedance
Accurate Response from 0.5 GHz to 40 GHz
Input Range of $\mathbf{- 3 0 ~ d B m}$ to +15 dBm re 50Ω
Unity Gain Scaled Linear in V/V Output
Fast Incremental Envelope Response: >20MHz
Reflection Distortion Elimination
Low Power Consumption: 1.5 mA at 5V
$2 \mathrm{~mm} \times 2 \mathrm{~mm}$, 6-lead LFCSP package

APPLICATIONS

High-precision Microwave Instrumentation
Point-to-Point Power-Level Control
Collision-Avoidance Systems

Figure 1. Functional block diagram
components which are reflected into the signal source. The ADL6010 detector does not exhibit this behavior - an important benefit in applications where a low-ratio coupler is used to extract a sample of the primary signal.

The supply voltage may range from 3.3 V up to 5.5 V , with no degradation in the response accuracy. The zero-signal current consumption is less than 3 mA .

The ADL6010 operates from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and is available in a 6 -lead, $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ LFCSP package.

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^0]
ADL6010

TABLE OF CONTENTS

Features .. 1
Applications... 1
Functional Block Diagram .. 1
General Description.. 1
Revision History ... 2
Specifications.. 3
Absolute Maximum Ratings.. 5

Thermal Resistance... 5
ESD Caution.. 5
Pin Configuration and Function Descriptions............................. 6
Typical Performance Characteristics .. 7
Outline Dimensions ... 10
Ordering Guide.. 10

REVISION HISTORY

Preliminary Technical Data

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VPOS}=5 \mathrm{~V}$, unless otherwise stated.
Table 1.

Parameter	Test Conditions	Min	Typ	Max	Unit
FREQUENCY RANGE	Input RFIN	500		40	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{GHz} \end{aligned}$
RF INPUT Input Impedance			50		Ω
$\mathrm{f}=1 \mathrm{GHz}$ Dynamic Range $\pm 0.5 \mathrm{~dB}$ Error $\pm 1 \mathrm{~dB}$ Error Maximum Input Level, $\pm 1 \mathrm{~dB}$ Minimum Input Level, $\pm 1 \mathrm{~dB}$ Conversion Gain Output Intercept Output Voltage, High Power In Output Voltage, Low Power In	Input RFIN to output VOUT CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ VOUT $=($ Gain \times ViN $)+$ Intercept $\begin{aligned} & P_{\text {in }}=+15 \mathrm{dBm} \\ & P_{\text {in }}=-30 \mathrm{dBm} \end{aligned}$		40 45 15 -30 1 0 4 0.03		dB dB dBm dBm V/V rms V V V
$\mathrm{f}=10 \mathrm{GHz}$ Dynamic Range $\pm 0.5 \mathrm{~dB}$ Error $\pm 1 \mathrm{~dB}$ Error Maximum Input Level, $\pm 1 \mathrm{~dB}$ Minimum Input Level, $\pm 1 \mathrm{~dB}$ Conversion Gain Output Intercept Output Voltage, High Power In Output Voltage, Low Power In	Input RFIN to output VOUT CW input, $T_{A}=+25^{\circ} \mathrm{C}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ VOUT $=\left(\right.$ Gain $\left.\times \mathrm{V}_{\text {IN }}\right)+$ Intercept $\begin{aligned} & P_{\text {in }}=+15 \mathrm{dBm} \\ & P_{\text {in }}=-30 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & 40 \\ & 45 \\ & 18 \\ & -30 \\ & 1 \\ & 0 \\ & 4 \\ & 0.03 \end{aligned}$		dB dB dBm dBm V/V rms V V V
$\mathrm{f}=20 \mathrm{GHz}$ Dynamic Range $\pm 0.5 \mathrm{~dB}$ Error $\pm 1 \mathrm{~dB}$ Error Maximum Input Level, $\pm 1 \mathrm{~dB}$ Minimum Input Level, $\pm 1 \mathrm{~dB}$ Conversion Gain Output Intercept Output Voltage, High Power In Output Voltage, Low Power In	Input RFIN to output VOUT CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ VOUT $=\left(\right.$ Gain $\left.\times \mathrm{V}_{\text {IN }}\right)+$ Intercept $\begin{aligned} & P_{\text {in }}=+15 \mathrm{dBm} \\ & P_{\text {in }}=-30 \mathrm{dBm} \end{aligned}$		40 45 15 -30 1 0 4 0.02		dB dB dBm dBm V/V rms V V V
$\mathrm{f}=30 \mathrm{GHz}$ Dynamic Range $\pm 0.5 \mathrm{~dB}$ Error $\pm 1 \mathrm{~dB}$ Error Maximum Input Level, $\pm 1 \mathrm{~dB}$ Minimum Input Level, $\pm 1 \mathrm{~dB}$ Conversion Gain Output Intercept Output Voltage, High Power In Output Voltage, Low Power In	Input RFIN to output VOUT CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ VOUT $=($ Gain \times ViN $)+$ Intercept $\begin{aligned} & P_{\text {in }}=+15 \mathrm{dBm} \\ & P_{\mathrm{in}}=-30 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & 40 \\ & 45 \\ & 15 \\ & -30 \\ & 1 \\ & 0 \\ & 4 \\ & 0.03 \\ & \hline \end{aligned}$		dB dB dBm dBm V/V rms V V V
$\mathrm{f}=40 \mathrm{GHz}$	Input RFIN to output VOUT				

ADL6010

Preliminary Technical Data

ABSOLUTE MAXIMUM RATINGS

Table Summary
Table 2.

Parameter	Rating
Supply Voltage, VPOS	TBD
RFIN	TBD
Maximum Junction Temperature	TBD
Operating Temperature Range	TBD
Storage Temperature Range	TBD

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3. Thermal Resistance

Package Type	θ_{JA}	θ_{Jc}	Unit
TBD	TBD	TBD	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADL6010

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2.Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,4,6$, EPAD	GND	Device Ground Pins. Pin 1,4 and 6 are ground pins and the metal slug on the underside of the chip must be connected to a low impedance ground plane.
2	VOUT	Envelop Peak Output.
3	VPOS	Supply Voltage Pin. The operational range is from 2.5 V to 5.5 V.
5	RFIN	Signal Input Pin. This pin is ac-coupled and has an input impedance of approximately 50 ohms.

Preliminary Technical Data

TYPICAL PERFORMANCE CHARACTERISTICS

Vpos $=5 \mathrm{~V}$; single-ggended input drive, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ (Blue), $+25^{\circ} \mathrm{C}$ (Green) and $+85^{\circ} \mathrm{C}$ (Red), input signal is a sine wave (CW), unless otherwise indicated.

Figure 3 Vout and Conformance Error vs. Pin and Temperature at 1 GHz .

Figure 4 Vout $a n d$ Conformance Error vs. $P_{\text {in }}$ and Temperature at 5 GHz .

Figure 5 Vout and Conformance Error vs. Pin and Temperature at 10 GHz .

Figure 5 Vout and Conformance Error vs. Pin and Temperature at 15 GHz .

Figure 7 Vout and Conformance Errorvs. Pin and Temperature at 20 GHz (Data Truncated by Measurement Setup).

Figure 8 Vout $a n d$ Conformance Error vs. Pin and Temperature at 25 GHz . (Data Truncated by Measurement Setup).

Figure 9 Vout and Conformance Error vs. Pin and Temperature at 30 GHz (Data Truncated by Measurement Setup).

Figure 10 Vout and Conformance Errorvs. Pin and Temperature at 35 GHz (Data Truncated by Measurement Setup).

Figure 11 Voutand Conformance Error vs. Pin and Temperature at 40 GHz (Data Truncated by Measurement Setup).

Preliminary Technical Data

EVALUATION BOARD

The ADL6010-EVALZ is a fully populated, 4-layer, Rogers 4003-based evaluation board. For normal operation, it requires a $5 \mathrm{~V} / 27 \mathrm{~mA}$ power supply. The 5 V power supply must be connected to the VPOS and GND test loops. The RF input
signal is applied to the 2.92 mm connector (RFIN). The output voltage is available on the SMA connector (VOUT) or on the test loop (V_VOUT). Configuration options for the evaluation board are listed in Table 5.

Figure 13ADL6010 Evaluation Board Schematics
Table 5. Evaluation Board Configuration Options

Component	Function/Notes	Default Value
R2, R3	Output interface. A 100 ohm series resistor should be used in the presence of large capacitive loads. R3 can be replaced with a 0 ohm resistor.	R2 $=100 \Omega$ (size: 0402) R3 $=100 \Omega$ (size: 0402)
C2	Bypass capacitor. It provides supply ac decoupling by forming a return path for the ac signal and reduces the noise at the input end. The nominal value is $0.1 \mu F$.	C2 $=0.1 \mu$ F (size: 0402)
RF Input. Southwest microwave 2.92 mm connector is used for input interface.		

ADL6010

OUTLINE DIMENSIONS

Figure 14.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Ordering Quantity
ADL6010ACPZN-R2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Lead Frame Chip Scale Package	TBD	250
ADL6010ACPZN-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Lead Frame Chip Scale Package	TBD	1500
ADL6010SCPZN-R2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Lead Frame Chip Scale Package	TBD	250
ADL6010SCPZN-R7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Lead Frame Chip Scale Package	TBD	1500
ADL6010-EVALZ		Evaluation Board	TBD	

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

