PMF370XN

N-channel TrenchMOS extremely low level FET

Rev. 03 — 20 June 2008

Product data sheet

1. Product profile

1.1 General description

Extremely low level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

1.2 Features and benefits

- Low conduction losses due to low on-state resistance
- Low threshold voltage
- Saves PCB space due to small footprint
 Suitable for low gate drive sources (40 % smaller than SOT23)
- Surface-mounted package

1.3 Applications

Driver circuits

Switching in portable appliances

1.4 Quick reference data

Table 1. **Quick reference**

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25~^{\circ}C;~T_j \le 150~^{\circ}C$	-	-	30	V
I _D	drain current	$T_{sp} = 25 ^{\circ}\text{C}; V_{GS} = 4.5 \text{V};$ see Figure 1 and 3	-	-	0.87	Α
P _{tot}	total power dissipation	T _{sp} = 25 °C; see <u>Figure 2</u>	-	-	0.56	W
Static ch	naracteristics					
R _{DSon}	drain-source on-state resistance	V_{GS} = 4.5 V; I_D = 0.2 A; T_j = 25 °C; see <u>Figure 9</u> and <u>10</u>	-	370	440	mΩ

N-channel TrenchMOS extremely low level FET

2. Pinning information

Table 2. Pinning

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate	□3	D
2	S	source		
3	D	drain	1	mbb076 S

3. Ordering information

Table 3. Ordering information

Type number	Package	Package					
	Name	Description	Version				
PMF370XN	SC-70	plastic surface-mounted package; 3 leads	SOT323				

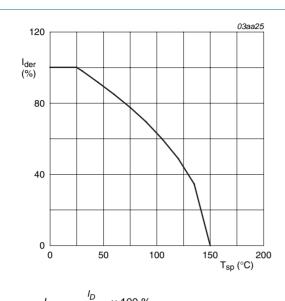
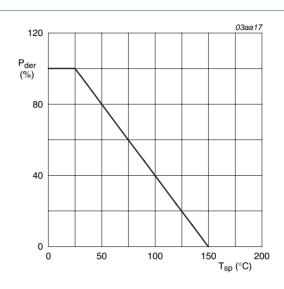

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25 \text{ °C}; T_j \le 150 \text{ °C}$	-	30	V
V_{DGR}	drain-gate voltage	$T_j \le 150~^{\circ}\text{C}; \ T_j \ge 25~^{\circ}\text{C}; \ R_{GS} = 20~\text{k}\Omega$	-	30	V
V_{GS}	gate-source voltage		-12	12	V
I_D	drain current	T_{sp} = 25 °C; V_{GS} = 4.5 V; see <u>Figure 1</u> and <u>3</u>	-	0.87	Α
		$T_{sp} = 100 ^{\circ}\text{C}$; $V_{GS} = 4.5 \text{V}$; see Figure 1	-	0.55	Α
I _{DM}	peak drain current	T_{sp} = 25 °C; $t_p \le$ 10 μs ; pulsed; see Figure 3	-	1.74	Α
P _{tot}	total power dissipation	T _{sp} = 25 °C; see <u>Figure 2</u>	-	0.56	W
T _{stg}	storage temperature		-55	150	°C
Tj	junction temperature		-55	150	°C
Source-	drain diode				
I _S	source current	T _{sp} = 25 °C	-	0.47	Α
I _{SM}	peak source current	T_{sp} = 25 °C; $t_p \le 10 \mu s$; pulsed	-	0.94	Α

N-channel TrenchMOS extremely low level FET

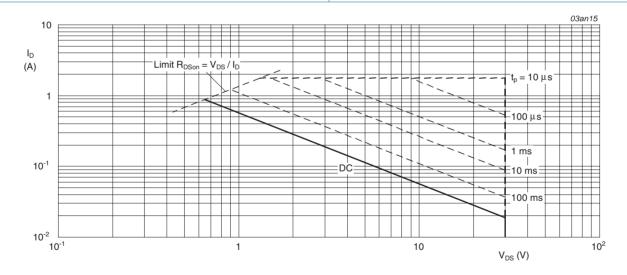

 $I_{der} = \frac{I_D}{I_{D(25\,^{\circ}\text{C})}} \times 100 \%$

Fig 1. Normalized continuous drain current as a function of solder point temperature

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100 \%$$

Fig 2. Normalized total power dissipation as a function of solder point temperature

 $T_{SP} = 25 \,^{\circ}\text{C}$; I_{DM} is single pulse; $V_{GS} = 4.5 V$

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

PMF370XN_3 © NXP B.V. 2008. All rights reserved.

N-channel TrenchMOS extremely low level FET

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-sp)}$	thermal resistance from junction to solder point	see <u>Figure 4</u>	-	-	220	K/W

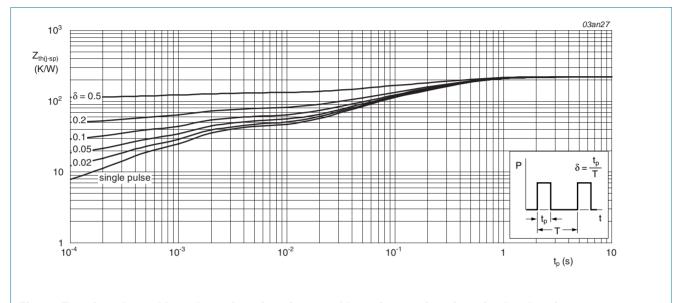


Fig 4. Transient thermal impedance from junction to solder point as a function of pulse duration

6. Characteristics

Table 6. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static char	racteristics					
V _{(BR)DSS}	drain-source	$I_D = 1 \mu A; V_{GS} = 0 V; T_j = -55 °C$	27	-	-	V
	breakdown voltage	$I_D = 1 \mu A; V_{GS} = 0 V; T_j = 25 °C$	30	-	-	V
V _{GS(th)}	gate-source threshold voltage	$I_D = 0.25 \text{ mA}; V_{DS} = V_{GS};$ $T_j = -55 ^{\circ}\text{C}; \text{ see } \frac{\text{Figure 7}}{\text{Figure 7}}$	-	-	1.8	V
		I_D = 0.25 mA; V_{DS} = V_{GS} ; T_j = 150 °C; see <u>Figure 7</u> and <u>8</u>	0.35	-	-	V
		$I_D = 0.25$ mA; $V_{DS} = V_{GS}$; $T_j = 25$ °C; see Figure 7 and 8	0.5	1	1.5	V
I _{DSS}	drain leakage current	$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}$	-	-	1	μΑ
		$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 70 ^{\circ}\text{C}$	-	-	2	μА
		$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V};$ $T_j = 150 ^{\circ}\text{C}$	-	-	10	μА
I _{GSS}	gate leakage current	V_{GS} = 12 V; V_{DS} = 0 V; T_j = 25 °C	-	10	100	nA
		$V_{GS} = -12 \text{ V}; V_{DS} = 0 \text{ V};$ $T_j = 25 \text{ °C}$	-	10	100	nA

N-channel TrenchMOS extremely low level FET

Table 6. Characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{DSon}	drain-source on-state resistance	$V_{GS} = 2.5 \text{ V}; I_D = 0.1 \text{ A};$ $T_j = 25 ^{\circ}\text{C}; \text{ see } \frac{\text{Figure 9}}{\text{Im}} \text{ and } \frac{10}{\text{Im}}$	-	550	650	$m\Omega$
		$V_{GS} = 4.5 \text{ V}; I_D = 0.2 \text{ A};$ $T_j = 150 \text{ °C}; \text{ see } \frac{\text{Figure 10}}{\text{ or } 100 \text{ or } 100 or $	-	629	748	mΩ
		$V_{GS} = 4.5 \text{ V}; I_D = 0.2 \text{ A};$ $T_j = 25 ^{\circ}\text{C}; \text{ see } \frac{\text{Figure 9}}{\text{Figure 9}} \text{ and } \frac{10}{\text{C}}$	-	370	440	mΩ
Dynamic c	haracteristics					
Q _{G(tot)}	total gate charge	I _D = 1 A; V _{DS} = 15 V;	-	0.65	-	nC
Q_{GS}	gate-source charge	$V_{GS} = 4.5 \text{ V}; T_j = 25 ^{\circ}\text{C};$	-	0.14	-	nC
Q_{GD}	gate-drain charge	see <u>Figure 11</u> and <u>12</u>	-	0.18	-	nC
C _{iss}	input capacitance	$V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V};$ $f = 1 \text{ MHz}; T_j = 25 ^{\circ}\text{C};$	-	37	-	pF
C _{oss}	output capacitance		-	8.5	-	pF
C _{rss}	reverse transfer capacitance	- see <u>Figure 13</u> -	-	5.5	-	pF
t _{d(on)}	turn-on delay time	$R_{G(ext)} = 6 \Omega$; $R_L = 15 \Omega$;	-	6.5	-	ns
t _r	rise time	$V_{DS} = 15 \text{ V}; V_{GS} = 4.5 \text{ V};$	-	9.5	-	ns
t _{d(off)}	turn-off delay time	$-T_j = 25 ^{\circ}\text{C}$	-	14	-	ns
t _f	fall time		-	5.5	-	ns
Source-dra	ain diode					
V_{SD}	source-drain voltage	$I_S = 0.3 \text{ A}$; $V_{GS} = 0 \text{ V}$; $T_j = 25 ^{\circ}\text{C}$; see Figure 14	-	0.81	1.2	V

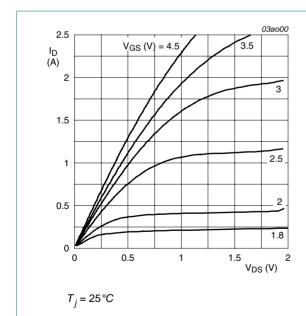
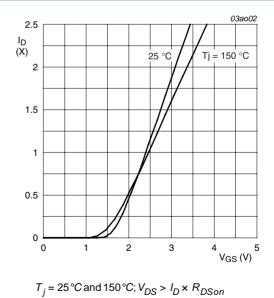
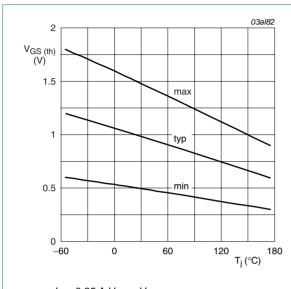
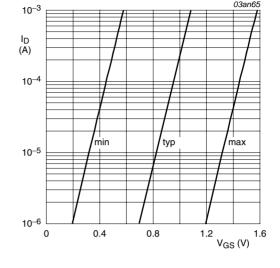


Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values


Fig 6. Transfer characteristics: drain current as a function of gate-source voltage; typical values

© NXP B.V. 2008. All rights reserved.

N-channel TrenchMOS extremely low level FET

 $I_D = 0.25 \, A; V_{DS} = V_{GS}$

$$T_j = 25 \,^{\circ}C; V_{DS} = 5V$$

Fig 7. Gate-source threshold voltage as a function of junction temperature

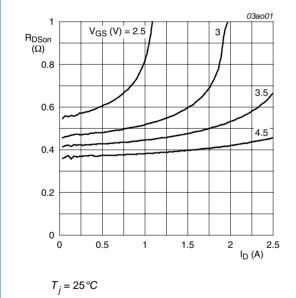


Fig 9. Drain-source on-state resistance as a function of drain current; typical values

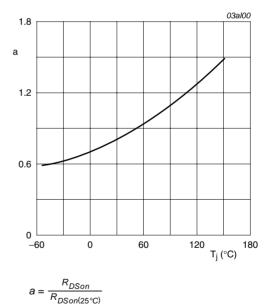
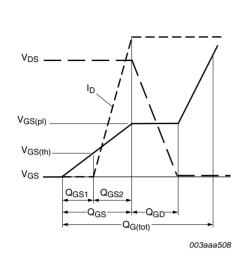
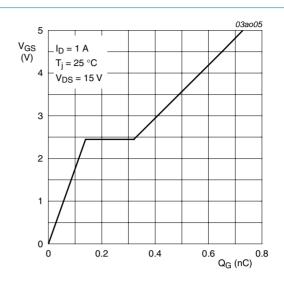
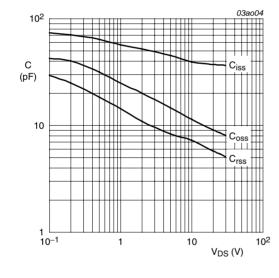
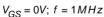




Fig 10. Normalized drain-source on-state resistance factor as a function of junction temperature

6 of 12

N-channel TrenchMOS extremely low level FET





$$I_D = 1 A; V_{DS} = 15V$$

Fig 11. Gate charge waveform definitions

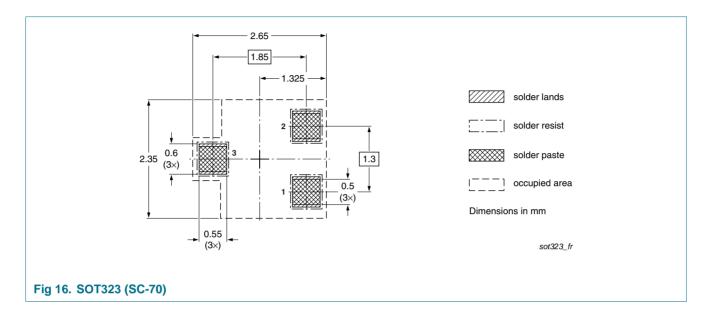
0.3ao03 V_{GS} = 0 V 0.6 0.4 0.2 150 °C T_j = 25 °C V_{SD} (V)

 $T_i = 25 \,^{\circ}\text{C} \text{ and } 150 \,^{\circ}\text{C}; V_{GS} = 0V$

Fig 13. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

Fig 14. Source current as a function of source-drain voltage; typical values

06-03-16


Package outline

Plastic surface-mounted package; 3 leads **SOT323** В Α X = v (M) A Q **→** | w (M) B е detail X 2 mm scale **DIMENSIONS (mm are the original dimensions)** UNIT Ε Q w bp ΗE L_{p} max 0.25 1.35 0.45 0.23 mm 1.3 0.65 0.2 0.8 0.3 REFERENCES OUTLINE **EUROPEAN ISSUE DATE PROJECTION** VERSION IEC JEDEC **JEITA** 04-11-04 SOT323 SC-70

Fig 15. Package outline SOT323 (SC-70)

N-channel TrenchMOS extremely low level FET

8. Soldering

10 of 12

N-channel TrenchMOS extremely low level FET

Revision history

Table 7. **Revision history**

Product data sheet

Document ID	Release date	Data sheet status	Change notice	Supersedes
PMF370XN_3	20080620	Product data sheet	-	PMF370XN_2
Modifications:	guidelines of	of this data sheet has been red f NXP Semiconductors. have been adapted to the new		·
PMF370XN_2	20051206	Product data sheet	-	PMF370XN-01
PMF370XN-01	20040211	Product data sheet	-	-

N-channel TrenchMOS extremely low level FET

10. Legal information

10.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

10.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

10.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

11. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

PMF370XN_3 © NXP B.V. 2008. All rights reserved.

PMF370XN **NXP Semiconductors**

N-channel TrenchMOS extremely low level FET

12. Contents

Product profile
General description 1
Features and benefits
Applications
Quick reference data 1
Pinning information 2
Ordering information
Limiting values
Thermal characteristics 4
Characteristics 4
Package outline 8
Soldering 9
Revision history
Legal information
Data sheet status
Definitions
Disclaimers
Trademarks11
Contact information 11
Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

founded by