

CCD Analog Front-End with Timing Generator for Digital Cameras

Check for Samples: VSP8133

FEATURES

- CCD Signal Processing:
 - Correlated Double Sampling (CDS)
 - 16-Bit Analog-to-Digital Conversion:
 - Conversion Rate: 50 MHz
 - No Missing Codes Ensured
- Input-Referred SNR: 80 dB at 12-dB Gain
- **Programmable and Fast Black-Level Clamping**
- **Programmable Gain Amplifier (PGA):** 0 dB to +51.15 dB
 - Analog Gain: 0 dB to +18 dB
 - Digital Gain: 0 dB to + 33.15 dB
 - Additional CDS Gain: +3.5 dB
- **Timing Generator:**
 - Fully Programmable V_{RATE} Timing with Serial I/O
 - Default Timing Supports Standard Operation
 - Flexible V_{RATE} Pin Assignment
 - HD and VD Master or Slave Mode
 - Flexible Draft or Pixel Summing Operation
 - Supported Timing Range: 32767 Pixels × 8191 Lines
 - Frame Memory Depth: 32
- RG and H_{DRIVER}:
 - Programmable Drivability Control
 - Two-Phase H_{MODE}
 - Reset Gate Driver and HL Driver
- **CCD Horizontal High-Speed Clock Phase** Control:
 - Fine Step: 0.2 ns for 50 MHz
 - DLL Range (H1, H2, HL, RG, MCKOUT, SHP, SHD): Full Range of MCLK in 1/100th Steps
- Vertical CCD Driver:
 - 16-Channel V_{DRIVER} with Sub-Driver
 - Supports Motion and Still CCD Driving

- Three Level Drivers (V_{TRANSFER}) × 10
- Two Level Drivers (V_{TRANSFER}) × 2
- Two Level Small Drivers (V_{TRANSFER}) × 4
- Three Level Sub-Drivers (E_{SHUTTER}) × 1
- 6100 pF with 30 Ω (Except two level small drivers)
- **Flexible Voltage Operation:**
 - AVDD30: 2.7 V to 3.6 V
 - IOVDD30: 1.8 V to 3.0 V
 - RGVDD30: 2.7 V to 3.6 V
 - HVDD30: 2.7 V to 3.6 V
 - VL: -5.0 V to -8.0 V
 - VM: GND
 - VH: 11 V to 15 V
- Low Power Dissipation:
 - Operation: 100 mW at 2.7 V (40 MHz)
 - Standby Mode 1: 8 mW
 - Standby Mode 2: 2 mW
- QFN-64 Package

DESCRIPTION

The VSP8133 is a complete, mixed-signal device for charge-coupled device (CCD) signal processing with a built-in CCD timing generator and an analog-todigital converter (ADČ). The analog front-end (AFE) CCD channel has correlated double sampling to extract image information from the CCD output signal. Signal paths have gains ranging from 0 dB to +51.15 dB. The black-level clamping circuit enables accurate black reference level and rapid black-level recovery after gain changes. An input signal clamp is also available. The system synchronizes the master clock, horizontal driver (HD), and vertical driver (VD). The VSP8133 supports all signal terminals that the CCD requires. The RG driver and H_{DRIVER} synchronize the ADC clock phase in order to achieve ideal performance.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SPI is a trademark of Motorola.

All other trademarks are the property of their respective owners.

SBES020A - JUNE 2011 - REVISED MAY 2013

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION⁽¹⁾

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE
VSP8133	QFN-64	RSK	0°C to +85°C

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

RELATED DOCUMENTS

PRODUCT	LITERATURE NUMBER
VSP8133 User Reference Manual	SLEU107

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Over operating free-air temperature range, unless otherwise noted.

PARAMETER		VALUE	UNIT
	AVDD30, IOVDD30, HVDD30, RGVDD30	-0.3 to +4.0	V
Supply voltage	VL	GND to -10	V
	VH	VL + 26	V
Ground voltage differences	AVSS, IOVSS30, HVSS30, HLVSS, RGVSS30	· ±0.1	
Digital input voltage		-0.3 to (IOVDD30 + 0.3)	V
Analog input voltage		-0.3 to (AVDD30 + 0.3)	V
Input current (all pins except supp	olies)	±10	mA
Ambient temperature under bias		-25 to +85	°C
Storage temperature		-55 to +125	°C
Junction temperature		+150	°C
Package temperature (IR reflow,	peak)	+250	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

VSP8133

RECOMMENDED OPERATING CONDITIONS

Over operating free-air temperature range, unless otherwise noted.

	PARAME	TER	MIN	TYP	MAX	UNIT
Analog supply voltage	AVDD30		2.7	3.0	3.6	V
Digital supply voltage	IOVDD30)	1.5		3.6	V
	HVDD30	, HLVDD30	2.7	3.0	3.6	V
Driver supply voltage	RGVDD3	RGVDD30		3.0	3.6	V
		IOVDD30 – 1.7 V ≤ VL + 10 V	VL	IOVD	D30 – 1.7	V
	VMSUB	IOVDD30 – 1.7 V > VL + 10 V	VL		VL + 10	V
	VL	•	-9.0		-5.0	V
	VH		11.5		15.5	V
	VM			GND		V
Digital input logic family			CMOS		V	
Disited is set also de formes a	MCK	МСК			50	MHz
Digital input clock frequency	SCLK	SCLK			20	MHz
Operating free-air temperature	T _A		0		+85	°C

THERMAL INFORMATION

		VSP8133	
	THERMAL METRIC ⁽¹⁾	RSK (QFN)	UNITS
		64 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	27.3	
θ _{JCtop}	Junction-to-case (top) thermal resistance	13.8	
θ_{JB}	Junction-to-board thermal resistance	5.9	8CAN
Ψ_{JT}	Junction-to-top characterization parameter	0.2	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	5.9	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	1.5	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

ELECTRICAL CHARACTERISTICS

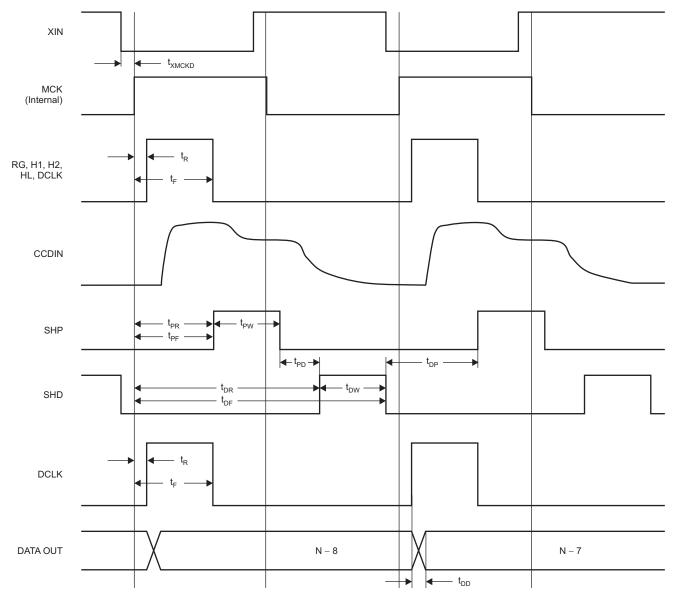
All specifications are at $T_A = +25^{\circ}C$, AVDD30 = IOVDD30 = 3.0 V, and conversion rate = 40 MHz, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
RESOL	UTION	· · · · · · · · · · · · · · · · · · ·		ļ	
	Output resolution		12		Bits
CONVE	RSION AND CLOCK RATE				
	Conversion and clock rate		9 40	50	MHz
ANALC	OG INPUT (CCDIN)				
	Input signal level for full-scale out	Gain = 0 dB	1000		mV
	Input capacitance		6		pF
TRANS	FER CHARACTERISTICS				
DNL	Differential nonlinearity	Gain = 0 dB	±0.5		LSB
		Gain = 0 dB, full-scale input	±3		LSB
INL	Integral nonlinearity	Gain = 0 dB, 50-mV input	±0.5		LSB
		Gain = 12 dB, 50-mV input	±1.0		LSB
	No missing codes		Ensured		
	Step response settling time	Full-scale step, settle to 1% of step	1		Pixel
	Overload recovery time	1.4-V step, settle to 1% of step	2		Pixels
	Data latency		10		Clocks
	RTI signal-to-noise ratio ⁽¹⁾	Grounded input capacitor, gain = 12 dB, IOVDD = 1.8 V, OB pedestal = 248	74.3		dB
	5	Grounded input capacitor, gain = 0 dB	72.4		dB
	CCD offset correction range		±150		mV
INPUT	CLAMP				
	Clamp on-resistance		0.4		kΩ
	Input clamp voltage		2.2		V
PROGR	RAMMABLE GAIN (CDS)				
	Total programmable gain range		51.15		dB
	Analog gain range		18		dB
	Digital gain range		33.15		dB
	Gain control error		0.05		dB
	Gain step		0.05		dB
	Additional CDS gain		+3.5		dB
OPTIC	AL BLACK CLAMP LOOP				
		Programmable range	64	319	LSB
	Optical black clamp level	Program step	0.5		LSB
DIGITA	L INPUTS	· · · · · · · · · · · · · · · · · · ·		ļ	
	Logic family		CMOS		
V _{T+}	Input voltage (Schmitt trigger), positive	Low-to-high threshold voltage at IOVDD30 = 3 V	1.2		V
V _{T-}	Input voltage (Schmitt trigger), negative	High-to-low threshold voltage at IOVDD30 = 3 V	1.0		V
	Input capacitance		5		pF
	Input leakage current high	Logic high		50	μA
	Input leakage current low	Logic low		50	μA

(1) RTI (referred to input) SNR = 20 log (output full-scale/output code rms noise) + gain in dB.

VSP8133

ELECTRICAL CHARACTERISTICS (continued)


All specifications are at $T_A = +25^{\circ}C$, AVDD30 = IOVDD30 = 3.0 V, and conversion rate = 40 MHz, unless otherwise noted.

	PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
DIGITA	L OUTPUTS					
	Logic family			CMOS		
	Logic coding			Straight binary		
V _{OH}	Output voltage, high	ı	Logic high	2.4		V
V _{OL}	Output voltage, low		Logic low	0.4		V
	R OUTPUTS (OUTPUT	VOLTAGE)				
V _{OH}	RG output voltage,	high	I _{OH} = 5 mA	(0.85)(RGVDD30)		V
V _{OL}	RG output voltage,	low	I _{OL} = 5 mA	(0.15)(RGVDD30)		V
V _{OH}	HL output voltage, h	nigh	I _{OH} = 5 mA	(0.85)(HVDD30)		V
V _{OL}	HL output voltage, I	ow	$I_{OL} = 5 \text{ mA}$	(0.15)(HVDD30)		V
V _{OH}	H1, H2 output volta	ge, high	I _{OH} = 30 mA	(0.85)(HVDD30)		V
V _{OL}	H1, H2 output volta		I _{OL} = 30 mA	(0.15)(HVDD30)		V
	TPUTS (OUTPUT VOL	TAGE)				
V _{OH}	HD, VD output volta	,	I _{OH} = 3 mA	(0.85)(IOVDD30)		V
V _{OL}	HD, VD output volta		$I_{OL} = 3 \text{ mA}$	(0.15)(IOVDD30)		V
-	(OUTPUT VOLTAGE)		- 1 ⁻	, , , , , , , , , , , , , , , , ,		
	V _{NUMBER} output		1 0 0	44.5		
V _{OH}	voltage, high	3-state	I _{OH} = 9 mA	14.5		V
	V _{NUMBER} output DL voltage, low	3-state	$I_{OL} = -9 \text{ mA}$	-7		V
V _{OL}		2-state large	$I_{OL} = -9 \text{ mA}$	-7		V
		2-state small	$I_{OL} = -0.5 \text{ mA}$	-7		V
	/ _{CM} V _{NUMBER} common- mode voltage 2-si 2-si	3-state	$I_{CM} = \pm 5 \text{ mA}$	±0.2		V
V _{CM}		2-state large	I _{CM} = 5 mA	-0.2		V
		2-state small	I _{CM} = 0.5 mA	-0.2		V
V _{OH}	VSUB voltage output, high	3-state	I _{OH} = 9 mA	14.5		V
V _{CM}	VSUB common- mode voltage	3-state	$I_{CM} = \pm 5 \text{ mA}$	±0.2		V
V _{OL}	VSUB voltage output, low	3-state	$I_{OL} = -9 \text{ mA}$	-7		V
POWE	R SUPPLY					
AFE, logic				140		mW
10			Normal operation mode:	5		mW
HDRIVER	२		without CCD load, AVDD30 = 2.7 V, IOVDD30 = 1.8 V	10		mW
VDRIVER	Dower dissinction			10		mW
Total				165		mW
<u>.</u>			Standby mode 1	8		mW
Standb	Standby		Standby mode 2	2		mW
TEMPE	RATURE RANGE			1		
	Operating temperat	ure		0	+85	°C

PARAMETER MEASUREMENT INFORMATION

TIMING REQUIREMENTS

High-Speed Pulse Timing Specification

NOTE: The SHP, SHD, CLPOB, and CLPDM signals are available as monitor signals. Refer to SLEU107 for enabling this mode and for polarity details.

Figure 1. High-Speed Timing Diagram

VSP8133

SBES020A-JUNE 2011-REVISED MAY 2013

www.ti.com

t_{PF}

t_{PR}

t_{DF}

t_{DR}

t_{PD}

t_{DP}

t_{PW}

t_{DW}

DL

MIN TYP PARAMETER MAX UNIT t_{CKP} MCK clock period 22 48 ns XIN to MCK delay, XTALEN low 1 ns t_{XMCKD} XIN to MCK delay, XTALEN high 1 t_{XMCKD} ns MCK rising edge to RG rising edge⁽¹⁾ 99 t_{CKP} / 100 t_{CKP} / 100 0 t_{RGR} ns MCK rising edge to RG falling edge⁽¹⁾ t_{CKP} / 100 24 t_{CKP} / 100 99 t_{CKP} / 100 ns t_{H1R} MCK rising edge to H1 rising edge⁽¹⁾ t_{H2R} t_{CKP} / 100 0 99 t_{CKP} / 100 ns MCK rising edge to H1 falling edge⁽¹⁾ t_{CKP} / 100 48 t_{CKP} / 100 99 t_{CKP} / 100 t_{LHR} ns MCK rising edge to H2 rising edge⁽¹⁾ t_{CKP} / 100 48 t_{CKP} / 100 99 t_{CKP} / 100 t_{H1F} ns MCK rising edge to H2 falling edge⁽¹⁾ t_{CKP} / 100 0 99 t_{CKP} / 100 t_{H2F} ns MCK rising edge to HL rising edge⁽¹⁾ 0 99 t_{CKP} / 100 t_{CKP} / 100 ns t_{LHR} MCK rising edge to HL falling edge⁽¹⁾ 99 t_{CKP} / 100 t_{LHF} t_{CKP} / 100 48 t_{CKP} / 100 ns MCK rising edge to SHP falling edge⁽¹⁾ t_{CKP} / 100 48 t_{CKP} / 100 99 t_{CKP} / 100 ns MCK rising edge to SHP rising edge⁽¹⁾ t_{CKP} / 100 24 t_{CKP} / 100 99 t_{CKP} / 100 ns MCK rising edge to SHD falling edge⁽¹⁾ t_{CKP} / 100 0 99 t_{CKP} / 100 ns MCK rising edge to SHD rising edge⁽¹⁾ 99 t_{CKP} / 100 t_{CKP} / 100 76 t_{CKP} / 100 ns SHP to SHD spacing t_{CKP} / 4 ns SHD to SHP spacing t_{CKP} / 4 ns SHP width 0 99 ns 0 99 SHD width % SHP sampling point to monitoring point -0.7 0 0.7 ns t_{PMDLY} 0 0.7 t_{DMDLY} SHD sampling point to monitoring point -0.7 ns t_{CKP} cycles Data latency 8

Table 1. Timing Characteristics for Figure 1

Pulse phase can be programmed through the serial interface. Refer to SLEU107 for details. (1)

Serial Interface Timing Specification

The serial interface has two writing modes: standard and continuous write. These modes are shown in Figure 2 and Figure 3, respectively.

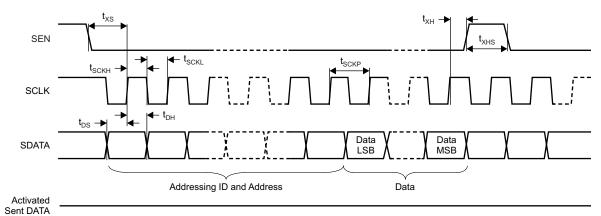


Figure 2. Standard Mode Timing

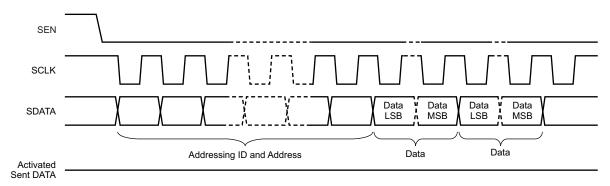


Figure 3. Continuous Write Mode Timing

	PARAMETER	MIN	ТҮР	MAX	UNIT
t _{SCKP}	Clock period	50			ns
t _{scкн}	Clock high pulse width	25			ns
t _{SCKL}	Clock low pulse width	25			ns
t _{DS}	Data setup time	15			ns
t _{DH}	Data hold time	15			ns
t _{XS}	CS to SCLK setup time	20			ns
t _{XH}	SCLK to CS hold time	20			ns
t _{XHS}	CS width	20			ns

Table 2. Timing	Characteristics	for Fi	gure 2	and	Figure 3	
-----------------	-----------------	--------	--------	-----	----------	--

The data shift operation latches data at the SCLK rising edges while \overline{CS} is low. Parallel latch timing for each mode is the end of MSB data.

In addition to the parallel latch, there are several registers dedicated to the specific features of the devices; these registers are synchronized with MCK. Fewer than 10 clock cycles are required for the data in the parallel latch to be written to these registers. Therefore, to complete data updates, less than 10 clock cycles are required after parallel latching.

SBES020A - JUNE 2011 - REVISED MAY 2013

www.ti.com

Slave Mode: VD, HD Timing Relationship

The VD and HD phase slave mode timing relationship is specified in Figure 4.

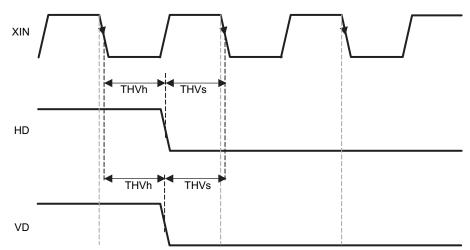


Figure 4. VD, HD Slave Mode Timing Relationship Diagram

	PARAMETER	MIN	TYP	MAX	UNIT
	XIN to DCLK delay		6		ns
THVs	VD, HD setup time	0			ns
THV _H	VD, HD hold time	6			ns
	VD, HD to pixel counter reset		17		т (MCK cycles)

(1) These specifications are valid when MCKPOL (register 80h, bit 8) = 0.

Master Mode: VD, HD Timing Relationship

The VD and HD phase master mode timing relationship is specified in Figure 5.

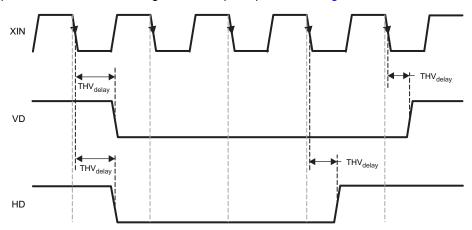


Figure 5. VD, HD Master Mode Timing Relationship Diagram

	PARAMETER	MIN	ТҮР	MAX	UNIT
	XIN to DCLK delay		6		ns
THV _{DELAY}	XIN to VD, HD delay	3.40		14.66	ns
	VD, HD to pixel counter reset		17		т (MCK cycles)

(1) These specifications are valid when MCKPOL (register 80h, bit 8) = 0.

EQUIVALENT CIRCUITS

H_{DRIVER} Load Model

Figure 6 shows the H1 and H2 high-speed driver and load model.

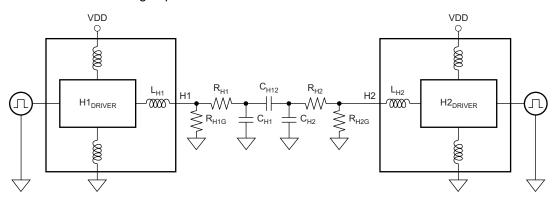
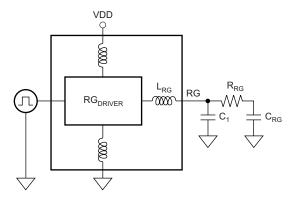



Figure 6. H_{DRIVER} and Load Model

RG_{DRIVER} Load Model

Figure 7 shows the RG high-speed driver and load model.

VSP8133

SBES020A - JUNE 2011 - REVISED MAY 2013

HL_{DRIVER} Load Model

Figure 8 shows the HL high-speed driver and load model.

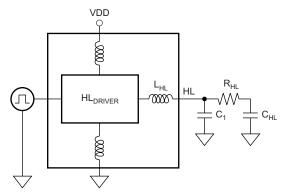


Figure 8. HL_{DRIVER} and Load Model

RD_{DRIVER}, HL_{DRIVER}, AND H_{DRIVER} DRIVING CURRENT SPECIFICATION

Table 5 lists the RD_{DRIVER}, HL_{DRIVER}, and H_{DRIVER} driving current specifications.

Table 5.	Driving	Current	Specification
----------	---------	---------	---------------

STRENGTH REGISTER	RG, HL (Each in mA at 3.3 V)	H1, H2 (Each in mA at 3.3 V)
Hi-Z	0	0
1x	2	8
2x	4	16
3х	6	24
4x	8	32
5x	10	40
6x	12	48
7x	14	56

www.ti.com

POWER-ON, POWER-OFF SEQUENCE

If any of the power sources are not supplied, the device may not function properly. The power-on and power-off sequences must be as shown in Figure 9 and Figure 10. Otherwise, the device may malfunction or even be irreversibly damaged.

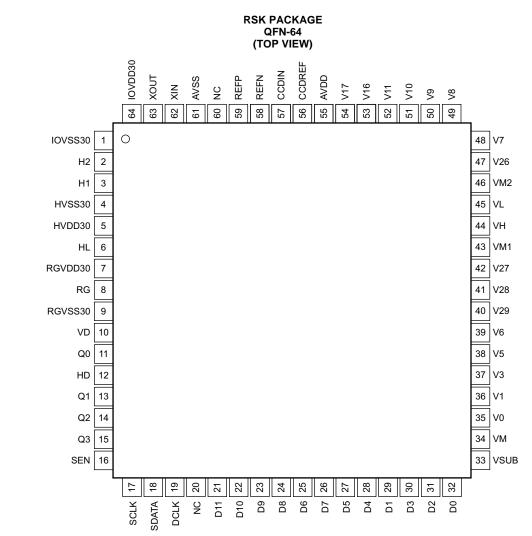

VH Supply
3.3-V Supply
VL Supply
SW Reset Download TG Code Initial Setting
Figure 9. Power-On Sequence Example
Power-Down Sequence

Figure 10. Power-Off Sequence Example

SBES020A-JUNE 2011-REVISED MAY 2013

www.ti.com

NOTE: NC = no connection.

SBES020A - JUNE 2011 - REVISED MAY 2013

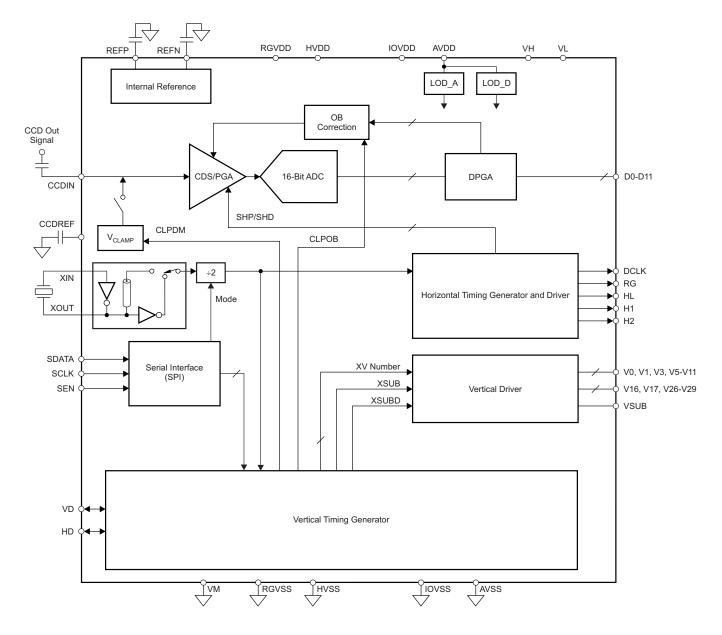
Table 6. PIN DESCRIPTIONS

PIN NUMBER	PIN NAME	TYPE ⁽¹⁾	DESCRIPTION
1	IOVSS30	G	Ground
2	H2	HDO	Horizontal drive output
3	H1	HDO	Horizontal drive output
4	HVSS30	G	Ground
5	HVDD30	Р	Supply for H1 and H2 drivers
6	HL	DO	HL horizontal drive output
7	RGVDD30	Р	Supply for RG and HL driver
8	RG	DO	Reset gate drive output
9	RGVSS30	G	Ground
10	VD	DIO	Frame synchronization pulse Input = slave mode (default mode = pull-down) Output = master mode
11	Q0	DIO	Connect to test pad
12	HD	DIO	Line synchronization pulse Input = slave mode (default mode = pull-down) Output = master mode
13	Q1	DIO	Connect to test pad
14	Q2	DIO	Connect to test pad
15	Q3	DIO	Connect to test pad
16	SEN	DI	Serial port interface enable (active low)
17	SCLK	DI	Serial port interface clock
18	SDATA	DI	Serial port interface data
19	DCLK	DO	Data clock output for latching data
20	NC	—	No connection
21	D11	DO	Data output bit 11
22	D10	DO	Data output bit 10
23	D9	DO	Data output bit 9
24	D8	DO	Data output bit 8
25	D6	DO	Data output bit 6
26	D7	DO	Data output bit 7
27	D5	DO	Data output bit 5
28	D4	DO	Data output bit 4
29	D1	DO	Data output bit 1
30	D3	DO	Data output bit 3
31	D2	DO	Data output bit 2
32	D0	DO	Data output bit 0
33	VSUB	VDO	V _{DRIVER} SUB output
34	VM	Р	Supply for VSUB middle level
35	V0	VDO	V _{DRIVER} output (three level)
36	V1	VDO	V _{DRIVER} output (three level)
37	V3	VDO	V _{DRIVER} output (three level)
38	V5	VDO	V _{DRIVER} output (three level)
39	V6	VDO	V _{DRIVER} output (three level)
40	V29	VDO	V _{DRIVER} output (two level, small)
41	V28	VDO	V _{DRIVER} output (two level, small)
42	V20 V27	VDO	V _{DRIVER} output (two level, small)

(1) Designators by type: AI = analog input; AO = analog output; DI = digital input; DO = digital output; G = ground; HDO = H_{DRIVER} output; P = power supply; and VDO = V_{DRIVER} output.

SBES020A - JUNE 2011 - REVISED MAY 2013

Table 6. PIN DESCRIPTIONS (continued)


PIN NUMBER	PIN NAME	TYPE ⁽¹⁾	DESCRIPTION
43	VM1	Р	Supply for V _{DRIVER} output, middle level
44	VH	Р	Supply for V _{DRIVER} , high level
45	VL	Р	Supply for V _{DRIVER} output, low level
46	VM2	Р	Supply for V _{DRIVER} output, middle level
47	V26	VDO	V _{DRIVER} output (two level, small)
48	V7	VDO	V _{DRIVER} output (three level)
49	V8	VDO	V _{DRIVER} output (three level)
50	V9	VDO	V _{DRIVER} output (three level)
51	V10	VDO	V _{DRIVER} output (three level)
52	V11	VDO	V _{DRIVER} output (three level)
53	V16	VDO	V _{DRIVER} output (two level, small)
54	V17	VDO	V _{DRIVER} output (two level, small)
55	AVDD	Р	Analog supply
56	CCDREF	AI	CCD ground reference; decouple to ground with a 0.1-µF capacitor close to the device
57	CCDIN	AI	CCD signal input; couple with a 0.1-µF capacitor
58	REFN	AO	ADC low reference voltage; decouple to ground with a 0.1-µF capacitor close to the device
59	REFP	AO	ADC high reference voltage; decouple to ground with a 0.1-µF capacitor close to the device
60	NC	_	No connection
61	AVSS	G	Ground
62	XIN	AI, DI	Crystal oscillator and external clock input
63	XOUT	AO	Crystal oscillator inverter output
64	IOVDD30	Р	I/O supply

SBES020A-JUNE 2011-REVISED MAY 2013

www.ti.com

FUNCTIONAL BLOCK DIAGRAM

COMMON SECTION

The device includes an analog front-end (AFE) section, timing generator (TG) section, and V_{DRIVER} , which are each explained later in this document. The primary functionality of this device is:

- Serial interface (SPI[™]) for programming,
- Control of register update timing,
- System reset via function pin or software,
- Crystal input support, and
- 8-bit general-purpose digital-to-analog converter (GP DAC).

Each setting of the AFE and timing generator (TG) is programmed with a serial interface (SPI). Some register settings are stored in the buffer through the SPI. This configuration is activated by a defined timing. For example, some areas of the register are activated at the VD active edge. A system reset function is supported by a function pin or register. For MCK, both external MCK and crystal input methods are supported. The GP DAC can be used as an external circuit. Figure 11 shows a block diagram of the Common section.

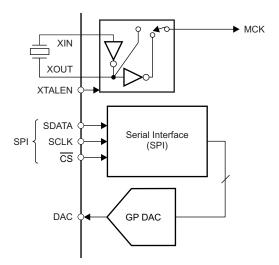


Figure 11. Common Section Block Diagram

SERIAL INTERFACE (SPI) FOR PROGRAMMING

The functions and timings are controlled through the serial interface, which consists of three signals: SDATA, SCLK, and CS for writing and a fourth signal (SOUT) for reading. SDATA data are sequentially stored to the shift register at the SCLK rising edge. Before a write operation, CS must go low and remain low during writing. Refer to the *Serial Interface Timing Specification* for further details.

The serial interface command is composed of an 8-bit addressing ID, a 16-bit address, and 24-bit data. Reserved registers cannot be written to. Most importantly, addresses FEh and FFh are reserved to prevent confusion in the addressing ID. The SPI has two sequence modes: standard mode and continuous mode. Table 7 shows the SPI mode matrix.

READ/WRITE	ADDRESSING ID (8-Bit)	SEQUENCE MODE	ACCESS AREA	
10/-:4-	FFF	Standard		
Write	FEh	Continuous	Register and memory	
Dead	CCP	Standard		
Read	FFh	Continuous		

Table 7. SPI Mode For Accessible Areas

VSP8133

www.ti.com

Standard Write Mode

Normally, one serial interface command is sent by one addressing ID, address, and data combination. The 16-bit address should be sent LSB first; the following 24-bit data should also sent LSB first. Data are stored in the respective register by the address. If data do not equal 24 bits at the end of the data stream, any empty data bits are discarded. The addressing ID value is fixed as FEh. Figure 12 shows the SPI standard write mode timing.

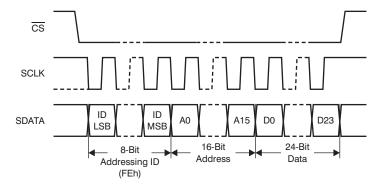


Figure 12. SPI Standard Write Mode for Register and Memory

Continuous Write Mode

This device also supports a continuous write mode, as shown in Figure 13. When the input serial data are longer than one set of instructions, the following data stream is automatically recognized as the data of the next address.

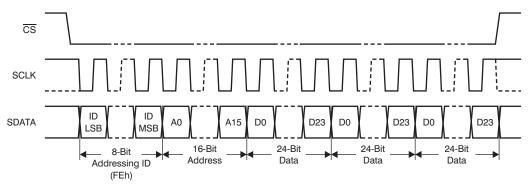


Figure 13. SPI Continuous Write Mode for Register and Memory

SBES020A - JUNE 2011 - REVISED MAY 2013

AFE (ANALOG FRONT-END) SECTION

The VSP8133 is a complete mixed-signal device that contains all key features associated with the processing of the CCD imager output signal in a video camera, digital still camera, security camera, or other similar applications. A simplified block diagram of the AFE section is shown in Figure 14. The AFE section includes:

- Correlated double sampler (CDS),
- Programmable gain amplifier (PGA),
- Input clamp,
- Analog-to-digital converter (ADC),
- Optical black (OB) level clamp loop,
- Timing control,
- Internal reference voltage generator, and
- Hot pixel rejection.

An off-chip emitter follower buffer is recommended to be placed between the CCD output and the VSP8133 CCDIN input. The serial interface controls PGA gain, clock polarity setting, and operating mode.

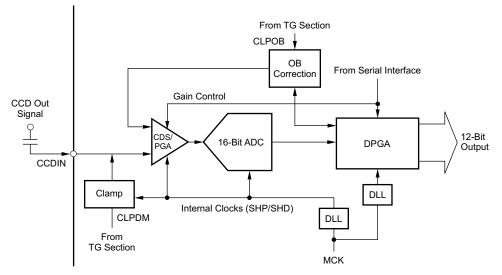


Figure 14. AFE Section Block Diagram

TIMING GENERATOR (TG) SECTION

This device supports variable CCD timing. For horizontal and vertical sequences, full programming is available. The TG section has the following major functionality:

- Programmable horizontal pattern,
- Programmable vertical pattern,
- Programmable V_{CCD} high-speed transfer pattern,
- Electrical zoom function,
- Sync signal selectable (master or slave),
- Programmable electrical shutter,
- Frame mode control via trigger,
- Waiting mode via trigger,
- Pixel summing operation,
- Adjustable high-speed pulse (H_{DRIVER} and AFE control),
- Selectable H_{DRIVER} power,
- Auto frame change mode, and
- Monitor out for internal signal.

VA, which is a programmable vertical sequence, supports a 32-frame mode. HA, which is a programmable horizontal sequence, has enough memory area for motion picture mode. HS, which is a programmable vertical high-speed transfer, can be used for electrical zooming or as a vibration canceller. The high-speed signal generator that controls the H_{DRIVER} signals can be adjusted in 100 fine steps for falling and rising signal timing. Similarly, AFE sampling signals can be adjusted in 100 fine steps for falling and rising signal timing. A simplified block diagram is shown in Figure 15.

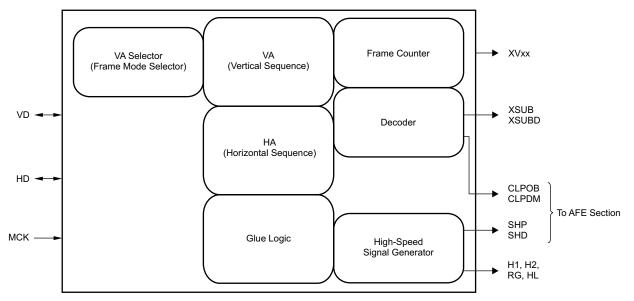


Figure 15. TG Section Block Diagram

SBES020A-JUNE 2011-REVISED MAY 2013

www.ti.com

V_{DRIVER} SECTION

VSUB 3-Level Output

Table 8 describes the 3-level output of VSUB.

Table 8. VSUB 3-Level Output

INPUT	TG OUTPUT)	OUTPUT (DEVICE PIN OUTPUT)				
SIG	IAL NAME	SIGNAL NAME	DRIVE CAPABILITY			
XSUB	XSUBD	VSUB	1000 pF through 30 Ω			
TRU	THTABLE		-			
XSUB	XSUBD	LEVEL ⁽¹⁾				
1	Low	VH				
Low	High	Hi-Z				
Lliab	Low		VL			
High	High		VM			

(1) VH = high level; Hi-Z = high impedance; VL = low level; and VM = middle level.

16-May-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
VSP8133RSKR	ACTIVE	QFN	RSK	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 85	VSP8133	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

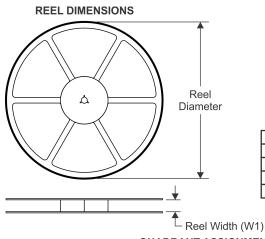
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

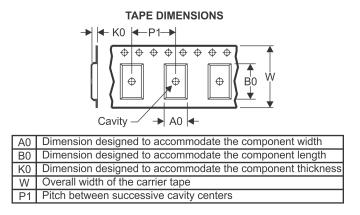
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

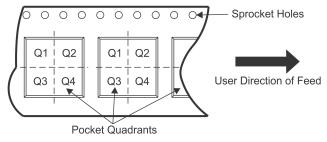
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION


www.ti.com

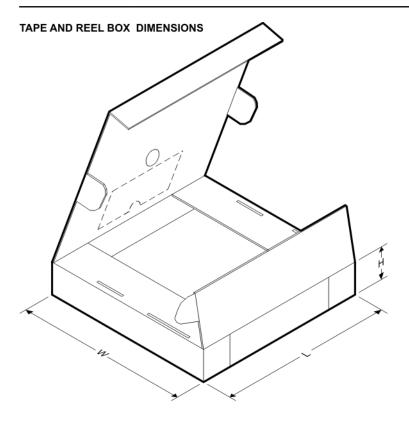

Texas Instruments

Pin1 Quadrant


Q2

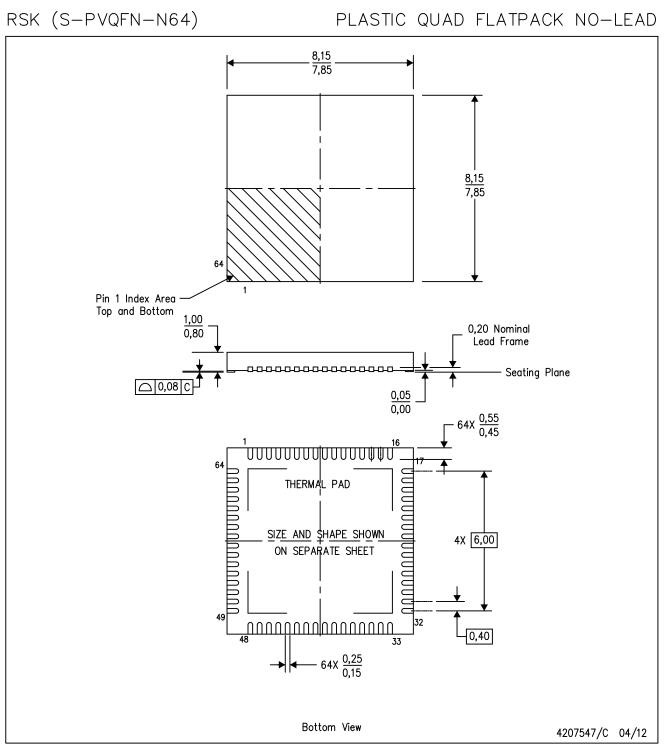
TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal											
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
VSP8133RSKR	QFN	RSK	64	2000	330.0	16.4	8.3	8.3	2.25	12.0	16.0

TEXAS INSTRUMENTS

www.ti.com


PACKAGE MATERIALS INFORMATION

17-May-2013

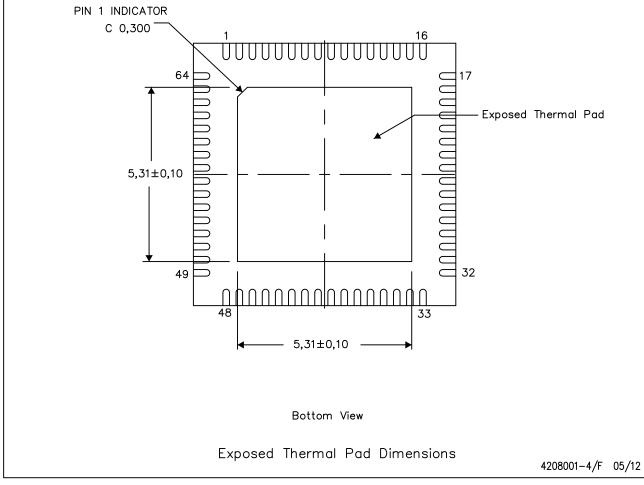
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
VSP8133RSKR	QFN	RSK	64	2000	367.0	367.0	38.0

NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994. A.

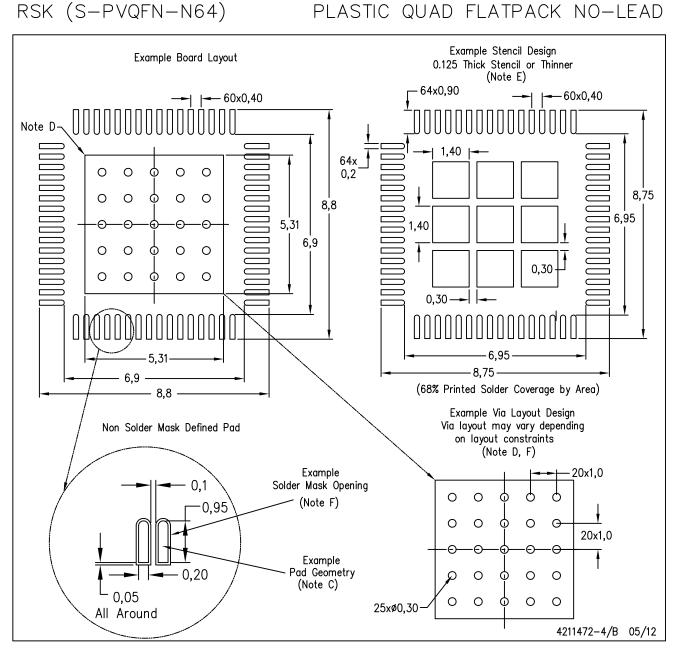
- This drawing is subject to change without notice. Β.
- C.
- QFN (Quad Flatpack No-Lead) Package configuration. The package thermal pad must be soldered to the board for thermal and mechanical performance. D.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

RSK (S-PVQFN-N64)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated