- High-Bandwidth Data Path (Up To $500 \mathrm{MHz} \dagger$)
- 5-V-Tolerant I/Os with Device Powered Up or Powered Down
- Low and Flat ON-State Resistance ($r_{o n}$) Characteristics Over Operating Range ($r_{\text {on }}=4 \Omega$ Typical)
- Rail-to-Rail Switching on Data I/O Ports
- 0- to 5-V Switching With 3.3-V VCc
- 0- to 3.3-V Switching With $2.5-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$
- Bidirectional Data Flow, With Near-Zero Propagation Delay
- Low Input/Output Capacitance Minimizes Loading and Signal Distortion
($\mathrm{C}_{\mathrm{io} \text { (OFF) }}=3.5 \mathrm{pF}$ Typical)
- Fast Switching Frequency (foe $=20 \mathrm{MHz}$ Max)
\dagger For additional information regarding the performance characteristics of the CB3Q family, refer to the TI application report, CBT-C, CB3T, and CB3Q Signal-Switch Families, literature number SCDA008.

DB, DBQ, DGV, DW, OR PW PACKAGE (TOP VIEW)

- Data and Control Inputs Provide Undershoot Clamp Diodes
- Low Power Consumption (ICC = 0.7 mA Typical)
- V_{CC} Operating Range From 2.3 V to 3.6 V
- Data I/Os Support 0- to 5-V Signaling Levels (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V, 5 V)
- Control Inputs Can Be Driven by TTL or 5-V/3.3-V CMOS Outputs
- I loff Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
- 2000-V Human-Body Model (A114-B, Class II)
- 1000-V Charged-Device Model (C101)
- Supports Both Digital and Analog Applications: Differential Signal Interface, Memory Interleaving, Bus Isolation, Low-Distortion Signal Gating

description/ordering information

The SN74CB3Q3244 is a high-bandwidth FET bus switch utilizing a charge pump to elevate the gate voltage of the pass transistor, providing a low and flat ON-state resistance ($r_{o n}$). The low and flat ON-state resistance allows for minimal propagation delay and supports rail-to-rail switching on the data input/output (I/O) ports. The device also features low data I/O capacitance to minimize capacitive loading and signal distortion on the data bus. Specifically designed to support high-bandwidth applications, the SN74CB3Q3244 provides an optimized interface solution ideally suited for broadband communications, networking, and data-intensive computing systems.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

2.5-V/3.3-V LOW-VOLTAGE HIGH-BANDWIDTH BUS SWITCH

SCDS154B - OCTOBER 2003 - REVISED DECEMBER 2004

description/ordering information (continued)

The SN74CB3Q3244 is organized as two 4-bit bus switches with separate output-enable ($1 \overline{\mathrm{OE}}, 2 \overline{\mathrm{OE}}$) inputs. It can be used as two 4 -bit bus switches or as one 8 -bit bus switch. When $\overline{\mathrm{OE}}$ is low, the associated 4 -bit bus switch is ON , and the A port is connected to the B port, allowing bidirectional data flow between ports. When $\overline{O E}$ is high, the associated 4-bit bus switch is OFF, and the high-impedance state exists between the A and B ports.

This device is fully specified for partial-power-down applications using $\mathrm{I}_{\text {off }}$. The $\mathrm{I}_{\text {off }}$ circuitry prevents damaging current backflow through the device when it is powered down. The device has isolation during power off.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	QFN - RGY	Tape and reel	SN74CB3Q3244RGYR	BU244
	SOIC - DW	Tube	SN74CB3Q3244DW	CB3Q3244
		Tape and reel	SN74CB3Q3244DWR	
	SSOP - DB	Tape and reel	SN74CB3Q3244DBR	BU244
	SSOP (QSOP) - DBQ	Tape and reel	SN74CB3Q3244DBQR	CB3Q3244
	TSSOP - PW	Tube	SN74CB3Q3244PW	BU244
		Tape and reel	SN74CB3Q3244PWR	
	TVSOP - DGV	Tape and reel	SN74CB3Q3244DGVR	BU244
	VFBGA - GQN	Tape and reel	SN74CB3Q3244GQNR	BU244

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE
(each 4-bit bus switch)

INPUT $\overline{\mathbf{O E}}$	INPUT/OUTPUT \mathbf{A}	FUNCTION
L	B	A port = B port
H	Z	Disconnect

logic diagram (positive logic)

simplified schematic, each FET switch (SW)

\dagger EN is the internal enable signal applied to the switch.

SN74CB3Q3244
 8-BIT FET BUS SWITCH
 2.5-V/3.3-V LOW-VOLTAGE HIGH-BANDWIDTH BUS SWITCH
 SCDS154B - OCTOBER 2003 - REVISED DECEMBER 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}	-0.5 V to 4.6 V
Control input voltage range, $\mathrm{V}_{\text {IN }}$ (see Notes 1 and 2)	-0.5 V to 7 V
Switch I/O voltage range, $\mathrm{V}_{\mathrm{I} / \mathrm{O}}$ (see Notes 1, 2, and 3)	-0.5 V to 7 V
Control input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\text {IN }}<0\right)$	-50 mA
I/O port clamp current, $\mathrm{I}_{\mathrm{I} / \mathrm{OK}}\left(\mathrm{V}_{\mathrm{I} / \mathrm{O}}<0\right)$	-50 mA
ON-state switch current, $\mathrm{I}_{\text {/ }}$ ((see Note 4)	$\pm 64 \mathrm{~mA}$
Continuous current through V_{CC} or GND terminals	$\pm 100 \mathrm{~mA}$
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 5): DB package	$70^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 5): DBQ package	$68^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 5): DGV package	$92^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 5): DW package	$58^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 5): GQN package	$78^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 5): PW package	$83^{\circ} \mathrm{C} / \mathrm{W}$
(see Note 6): RGY package	$37^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltages are with respect to ground unless otherwise specified.
2. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
3. V_{I} and V_{O} are used to denote specific conditions for $\mathrm{V}_{\mathrm{I} / \mathrm{O}}$.
4. I_{I} and I_{O} are used to denote specific conditions for $\mathrm{I}_{\mathrm{I} / \mathrm{O}}$.
5. The package thermal impedance is calculated in accordance with JESD 51-7.
6. The package thermal impedance is calculated in accordance with JESD 51-5.
recommended operating conditions (see Note 7)

			MIN	MAX	UNIT
V_{CC}	Supply voltage	2.3	3.6	V	
$\mathrm{~V}_{\mathrm{IH}}$	High-level control input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7	5.5	V
		$\mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	2	5.5	
$\mathrm{~V}_{\mathrm{IL}}$	Low-level control input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	0	0.7	V
		$\mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	0	0.8	
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	Data input/output voltage		0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	-40	85	${ }^{\circ} \mathrm{C}$	

NOTE 7: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the Tl application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT
V_{IK}		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.8	V
IIN	Control inputs	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{IN}}=0$ to 5.5 V				± 1	$\mu \mathrm{A}$
$\mathrm{loz}{ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=0, \end{aligned}$	Switch OFF, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND			± 1	$\mu \mathrm{A}$
$\mathrm{l}_{\text {off }}$		$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V ,	$\mathrm{V}_{\mathrm{I}}=0$			1	$\mu \mathrm{A}$
ICC		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{I}_{/ / O}=0,$ Switch ON or OFF,	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		0.7	2	mA
$\Delta_{\text {I CC }}{ }^{\text {® }}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	One input at 3 V ,	Other inputs at V_{CC} or GND			30	$\mu \mathrm{A}$
${ }^{\text {I CCD }}$	Per control input	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V},$ Control input switchin	A and B ports open, at 50% duty cycle			0.14	0.15	$\mathrm{mA} /$
$\mathrm{C}_{\text {in }}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$,	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, 3.3 \mathrm{~V}$, or			2.5	3.5	pF
$\mathrm{C}_{\mathrm{io} \text { (OFF) }}$		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$,	Switch OFF, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND,	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=5.5 \mathrm{~V}, 3.3 \mathrm{~V}$, or 0		3.5	5	pF
$\mathrm{C}_{\mathrm{io}}(\mathrm{ON})$		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$,	Switch ON, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND},$	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=5.5 \mathrm{~V}, 3.3 \mathrm{~V}$, or 0		9	11	pF
$\mathrm{ron}^{\#}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \\ & \text { TYP at } \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=0$,	$\mathrm{I}=30 \mathrm{~mA}$		4	8	Ω
		$\mathrm{V}_{1}=1.7 \mathrm{~V}$,	$\mathrm{I}=-15 \mathrm{~mA}$		5	9		
		$\mathrm{V}_{C C}=3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0$,	$\mathrm{I}=30 \mathrm{~mA}$		4	6	
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$,	$\mathrm{I}=-15 \mathrm{~mA}$		5	8		

V_{IN} and I_{IN} refer to control inputs. $\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}, \mathrm{I}_{\mathrm{I}}$, and I_{O} refer to data pins.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For I/O ports, the parameter IOZ includes the input leakage current.
§ This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND.
IT This parameter specifies the dynamic power-supply current associated with the operating frequency of a single control input (see Figure 2).
\# Measured by the voltage drop between the A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT
			MIN	MAX	MIN	MAX	
$\mathrm{fOE}^{\text {II }}$	$\overline{\mathrm{OE}}$	A or B		10		20	MHz
$t_{\text {pd }}{ }^{\text {² }}$	A or B	B or A		0.12		0.2	ns
$\mathrm{t}_{\text {en }}$	$\overline{\mathrm{OE}}$	A or B	2.8	7.1	2.5	5.9	ns
${ }^{\text {dis }}$	$\overline{\mathrm{OE}}$	A or B	1	5.8	1.5	5.8	ns

[^0]

Figure 1. Typical $r_{\text {on }}$ vs $\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{O}}=-15 \mathrm{~mA}$

Figure 2. Typical Icc vs $\overline{\mathrm{OE}}$ Switching Frequency, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

PARAMETER MEASUREMENT INFORMATION

TEST	V_{CC}	S1	R_{L}	V_{1}	C_{L}	V_{Δ}
${ }^{\text {tpd }}$ (s)	$\begin{aligned} & 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ & 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \end{aligned}$	Open Open	$\begin{aligned} & 500 \Omega \\ & 500 \Omega \end{aligned}$	$V_{C C}$ or GND VCC or GND	$\begin{aligned} & 30 \mathrm{pF} \\ & 50 \mathrm{pF} \end{aligned}$	
tPLZ/tPZL	$\begin{aligned} & 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ & 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \times V_{C C} \\ & 2 \times V_{C C} \end{aligned}$	$\begin{aligned} & 500 \Omega \\ & 500 \Omega \end{aligned}$	GND GND	$\begin{aligned} & 30 \mathrm{pF} \\ & 50 \mathrm{pF} \end{aligned}$	$\begin{gathered} 0.15 \mathrm{~V} \\ 0.3 \mathrm{~V} \end{gathered}$
tPHz/tPZH	$\begin{aligned} & 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ & 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \end{aligned}$	GND	$\begin{aligned} & 500 \Omega \\ & 500 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 30 \mathrm{pF} \\ & 50 \mathrm{pF} \end{aligned}$	$\begin{gathered} 0.15 \mathrm{~V} \\ 0.3 \mathrm{~V} \end{gathered}$

Output

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time, with one transition per measurement.
E. $t_{P L Z}$ and tPHZ are the same as $\mathrm{t}_{\text {dis. }}$.
F. tPZL and tPZH are the same as ten.
G. IPLH^{2} and tPHL^{2} are the same as $\mathrm{t}_{\mathrm{pd}}(\mathrm{s})$. The tpd propagation delay is the calculated RC time constant of the typical ON -state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).
H. All parameters and waveforms are not applicable to all devices.

Figure 3. Test Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Top-Side Markings (4)	Samples
74CB3Q3244DBQRE4	ACTIVE	SSOP	DBQ	20	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CB3Q3244	Samples
74CB3Q3244DBQRG4	ACTIVE	SSOP	DBQ	20	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CB3Q3244	Samples
74CB3Q3244DGVRE4	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BU244	Samples
74CB3Q3244DGVRG4	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BU244	Samples
74CB3Q3244RGYRG4	ACTIVE	VQFN	RGY	20	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BU244	Samples
SN74CB3Q3244DBQR	ACTIVE	SSOP	DBQ	20	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CB3Q3244	Samples
SN74CB3Q3244DBR	PREVIEW	SSOP	DB	16	2000	TBD	Call TI	Call TI	-40 to 85		
SN74CB3Q3244DGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BU244	Samples
SN74CB3Q3244DW	PREVIEW	SOIC	DW	16	40	TBD	Call TI	Call TI	-40 to 85		
SN74CB3Q3244DWR	PREVIEW	SOIC	DW	16	2000	TBD	Call TI	Call TI	-40 to 85		
SN74CB3Q3244PW	ACTIVE	TSSOP	PW	20	70	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BU244	Samples
SN74CB3Q3244PWE4	ACTIVE	TSSOP	PW	20	70	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BU244	Samples
SN74CB3Q3244PWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BU244	Samples
SN74CB3Q3244PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BU244	Samples
SN74CB3Q3244PWRE4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BU244	Samples
SN74CB3Q3244PWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	BU244	Samples
SN74CB3Q3244RGYR	ACTIVE	VQFN	RGY	20	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BU244	Samples
SN74CB3Q3244ZQNR	ACTIVE	BGA MICROSTAR JUNIOR	ZQN	20	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BU244	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-$ Free/Green conversion plan has not been defined.
$\mathrm{Pb}-\mathrm{Free}$ (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74CB3Q3244DBQR	SSOP	DBQ	20	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74CB3Q3244DGVR	TVSOP	DGV	20	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74CB3Q3244PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74CB3Q3244RGYR	VQFN	RGY	20	3000	330.0	12.4	3.8	4.8	1.6	8.0	12.0	Q1
SN74CB3Q3244ZQNR	BGA MI BROSTA R JUNI OR	ZQN	20	1000	330.0	12.4	3.3	4.3	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74CB3Q3244DBQR	SSOP	DBQ	20	2500	367.0	367.0	38.0
SN74CB3Q3244DGVR	TVSOP	DGV	20	2000	367.0	367.0	35.0
SN74CB3Q3244PWR	TSSOP	PW	20	2000	367.0	367.0	38.0
SN74CB3Q3244RGYR	VQFN	RGY	20	3000	367.0	367.0	35.0
SN74CB3Q3244ZQNR	BGA MICROSTAR JUNIOR	ZQN	20	1000	340.5	338.1	20.6

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-285 variation BC-2.
D. This package is lead-free. Refer to the 20 GQN package (drawing 4200704) for tin-lead (SnPb).

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

DBQ (R-PDSO-G20) PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$ per side.
D. Falls within JEDEC MO-137 variation AD.

PW (R-PDSO-G20)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shal not exceed 0,15 each side
D Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

THERMAL PAD MECHANICAL DATA

RGY (R-PVQFN-N20)

> PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

[^1]

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http: //www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

DW (R-PDSO-G16)

4040000-2/G 01/11
NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AA.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

[^0]: || Maximum switching frequency for control input ($\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=0$)
 *The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

[^1]: NOTE: All linear dimensions are in millimeters

