

SCDS306-OCTOBER 2010

USB 2.0 High-Speed (480 Mbps) and Audio Switches with Negative Signal Capability and 1.8-V Logic Compatibility

Check for Samples: TS5USBA224

FEATURES

- High-Speed USB Switch:
 - $-4\Omega R_{DSON}$ Typical
 - 12.5 pF C_{ON} Typical
 - 650-MHz Bandwidth (-3 dB)
- Audio Switch:
 - 3 Ω R_{DSON} Typical
 - Negative Rail Capability
 - Low THD: <0.05%
 - Internal Shunt Resistors for Click-and-Pop Reduction
 - Powered From V_{AUDIO} (2.7V to 5.5V)
- 1.8-V Compatible Control Input (A_{SEL} and V_{BUS}) Threshold
- I_{OFF} Supports Partial Powerdown Mode
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
 - 200-V Machine Model (A115-A)

DESCRIPTION

The TS5USBA224 is a double-pole, double throw (DPDT) multiplexer that includes a low-distortion audio switch and a USB 2.0 High-Speed (480Mbps) switch in the same package. This configuration allows the system designer to use a common connector for audio and USB data. The audio switch is designed to allow audio signals to swing below ground which makes this common connector configuration possible.

The TS5USBA224 is powered up using V_{AUDIO}. When A_{SEL}=High, the audio path is selected regardless of the logic level at V_{BUS}. If A_{SEL}=Low and V_{BUS}=High, the USB path is selected. Otherwise if A_{SEL}=Low and V_{BUS}=Low, the audio path is selected.

The TS5USBA224 also features shunt resistors on the audio path to reduce clicks and pops that may be heard when the audio switches are selected.

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾ ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	QFN 0.4-MM PITCH – RSW (Pb-Free)	Tape and reel	TS5USBA224RSWR	A5R

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

APPLICATIONS

- Cellular Phones
- Personal Digital Assistants (PDAs)
- Portable Instrumentation
- Digital Still Cameras
- Portable Navigation Devices

SCDS306-OCTOBER 2010

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

SUMMARY OF TYPICAL CHARACTERISTICS

	USB PATH	AUDIO PATH
Number of switches	2	2
ON-state resistance (r _{on})	4 Ω	3 Ω
ON-state resistance match (Δr_{on})	< 0.3 Ω	< 0.3 Ω
ON-state resistance flatness (r _{on(flat)})	N/A	1.5 Ω
Turn-on/turn-off time (t _{ON} /t _{OFF})	< 2 µs	< 4 µs
Bandwidth (BW)	650 MHz	N/A
OFF isolation (O _{ISO})	–22 dB	–83 dB
Crosstalk (X _{TALK})	–31 dB	–83 dB
Total harmonic distortion (THD)	N/A	0.05%

	PIN		DESCRIPTION
NO.	NAME	TYPE	DESCRIPTION
1	D-	I/O	USB Data (Differential –)
2	R	I/O	Right Channel Audio
3	L	I/O	Left Channel Audio
4	GND	Ground	Ground
5	V _{AUDIO}	Power	Supply Voltage
6	D–/L	I/O	USB/Audio Common Connector
7	D+/R	I/O	USB/Audio Common Connector
8	A _{SEL}	Input	Control Input for Audio Path
9	V _{BUS}	Input	Control Input for USB Path
10	D+	I/O	USB Data (Differential +)

PIN DESCRIPTION TABLE

2

www.ti.com

SCDS306-OCTOBER 2010

FONCTION TABLE									
A _{SEL}	V _{AUDIO}	V _{BUS}	L,R	D+, D–					
L	L	L	OFF	OFF					
L	L	Н	OFF	OFF					
L	Н	L	ON	OFF					
L	Н	Н	OFF ⁽¹⁾	ON					
Н	L	L	OFF	OFF					
Н	L	Н	OFF	OFF					
Н	Н	L	ON	OFF					
Н	Н	Н	ON	OFF					

FUNCTION TABLE

(1) 100Ω shunt resistors are enabled in this state.

TYPICAL APPLICATION BLOCK DIAGRAM

TEXAS INSTRUMENTS

SCDS306-OCTOBER 2010

www.ti.com

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{AUDIO}	Supply voltage range ⁽³⁾		-0.5	6.5	V
V _{D+} V _{D-}	Analog voltage Renge (3)		-0.5	6.5	V
V _R V _L	Analog voltage Kange	V _{AUDIO} – 6.5	V _{AUDIO} + 0.5	V	
Ι _κ	Analog port diode current	$V_{D+}, V_{D-} < 0$	-50		mA
I _{D+} , I _{D-} I _R , I _L	ON-state switch current	V_{D+}, V_{D-} = 0 to $V_{AUDIO},$ $V_{R}, V_{L} V_{D+/R}, V_{D-/L}$ = V_{AUDIO} – 5.5 V to V_{AUDIO}	-100	100	mA
I _{D+/R} I _{D–/L}	ON-state peak switch current ⁽⁴⁾		-200	200	
VI	Digital input voltage range		-0.5	6.5	V
I _{IK}	Digital logic input clamp current ⁽³⁾	V ₁ < 0		-50	mA
I _{AUDIO}	Continuous current through V _{AUDIO}			100	mA
I _{GND}	Continuous current through GND		-100		mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

(3) All voltages are with respect to ground, unless otherwise specified.

(4) Pulse at 1-ms duration <10% duty cycle.

PACKAGE THERMAL IMPEDANCE⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

PARAMETER				TEST CONDITIONS	ТҮР	UNIT		
θ_{JA}	P	Package thern	nal impedance		RSW pack	age	175	°C/W

(1) The package thermal impedance is calculated in accordance with JESD 51-7.

ELECTRICAL CHARACTERISTICS

 $T_A = -40^{\circ}$ C to 85°C, typical values are at $V_{AUDIO} = 3.3$ V, $T_A = 25^{\circ}$ C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
USB SWITCH	l						
V_{D+}, V_{D-}	Analog voltage range			0		5.5	V
r _{on}	ON-state resistance	$V_{AUDIO} = 3 V, V_{BUS} = 5 V, V_{ASEL} = 0 V, V_{D+/D-} = 0 V, 0.4 V, I_{ON} = -8 mA$	Switch ON		4	7	Ω
Δr_{on}	ON-state resistance match between channels		Switch ON			0.3	Ω
I _{D+(OFF)} I _{D–(OFF)}	D+ ,D- OFF leakage current		Switch OFF			±50	nA
I _{D+(ON)} I _{D-(ON)}	D+ ,D– ON leakage current	$V_{AUDIO} = 3.6 V, V_{BUS} = 5 V, V_{ASEL} = 0$ V, $V_{D+}, V_{D-} = 0.3 V, V_{D+/R} = Open$	Switch ON			±50	nA
AUDIO SWIT	СН						
V_R, V_L	Analog voltage range			V _{AUDIO} – 5.5		V _{AUDIO}	V
r _{on}	ON-state resistance	$V_{AUDIO} = 3 V, V_{BUS} = 0 V, V_{ASEL} = 3 V, V_{L/R} = -2 V, 0 V, 0.7 V, I_{ON} = -26 mA$	Switch ON		3	5	Ω
Δr_{on}	ON-state resistance match between channels	$\label{eq:VAUDIO} \begin{array}{l} V_{AUDIO} = 3 \ V, \ V_{BUS} = 0 \ V, \ V_{ASEL} = 3 \ V, \\ V_{L/R} = 0.7 \ V, \ I_{ON} = -26 \ mA \end{array}$	Switch ON			0.3	Ω
r _{on (flat)}	ON-state resistance flatness		Switch ON		1.5	2.5	Ω

Copyright © 2010, Texas Instruments Incorporated

SCDS306-OCTOBER 2010

TEXAS INSTRUMENTS

www.ti.com

SCDS306-OCTOBER 2010

ELECTRICAL CHARACTERISTICS (continued)

 $T_A = -40^{\circ}C$ to 85°C, typical values are at $V_{AUDIO} = 3.3$ V, $T_A = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
r _{SHUNT}	Shunt resistance		Switch OFF		100	200	Ω
I _{L(OFF)} I _{R(OFF)}	L, R OFF leakage current		Switch OFF			±50	nA
I _{L(ON)} I _{R(ON)}	L, R ON leakage current		Switch ON			±50	nA
DIGITAL (CONTROL INPUTS (A _{SEL} , V _{BUS})						
V _{IH}	Input logic high	$V_{AUDIO} = 2.7V$ to 5.5V		1.2			V
V _{IL}	Input logic low	$V_{AUDIO} = 2.7V$ to 5.5V				0.5	V
I _{IN}	Input leakage current	V _{AUDIO} = 3.6V	VIN = 3.6V			±10	μA
			VIN = 0V			±1	
r _{PD1}	Internal pulldown resistance				3		MΩ
r _{PD2}	Internal pulldown resistance				5		MΩ

6

SCDS306-OCTOBER 2010

www.ti.com

DYNAMIC CHARACTERISTICS

 $T_A = -40^{\circ}$ C to 85°C, typical values are at $V_{AUDIO} = 3.3$ V, $T_A = 25^{\circ}$ C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT	
USB SWIT	СН					
t _{ON}	Turn-on time	$\label{eq:VAUDIO} \begin{split} V_{AUDIO} &= 3 \ V, \ V_{BUS} = 0 \ V \ to \ 5 \ V, \ V_{ASEL} = 0 \ V, \\ V_{D+/R, \ D-/L} &= 1 \ V, \ Figure \ 10 \end{split}$		2		μS
t _{OFF}	Turn-off time	$ V_{AUDIO} = 3 \text{ V}, V_{BUS} = 5 \text{ V to } 0 \text{ V}, V_{ASEL} = 0 \text{ V}, $ $ V_{D+/R, D-/L} = 1 \text{ V}, Figure 10 $		1		μs
t _{SK(O)}	Channel-to-channel skew	f = 240 MHz, Figure 11		35		ps
t _{SK(P)}	Skew of opposite transitions of same output	f = t 240 MHz, Figure 11	25		ps	
$\begin{array}{c} C_{D+(OFF)} \\ C_{D-(OFF)} \end{array}$	D+, D-OFF capacitance	$V_{AUDIO} = 3 V$, $V_{BUS} = 0 V$, $A_{SEL} = 3 V$, f = 240 MHz	2.8		pF	
C _{D+(ON)} C _{D-(ON)}	D+, D– ON capacitance	$V_{AUDIO} = 3 V$, $V_{BUS} = 5 V$, $A_{SEL} = 0 V$, f = 240 MHz	Switch ON	12.5		pF
CI	Digital input capacitance	$V_{AUDIO} = 3 V$, $V_{BUS} = 0 V$, $A_{SEL} = 0 V$, f = 1 MHz	2.2		pF	
BW	Bandwidth	$V_{AUDIO} = 3 \text{ V}, V_{BUS} = 5 \text{ V}, V_{ASEL} = 0 \text{ V}, Figure 12$	Switch ON	650		MHz
O _{ISO}	OFF Isolation		-22		dB	
X _{TALK}	Crosstalk	$\label{eq:VAUDIO} \begin{array}{l} V_{AUDIO} = 3 \; V, \; V_{BUS} = 5 \; V, \; V_{ASEL} = 0 \; V, \\ R_{L} = 50 \; \Omega, \; f = 240 \; MHz, \; Figure \; 13 \end{array}$	Switch ON	-31		dB
AUDIO SW	ІТСН					
t _{ON}	Turn-on time	$V_{AUDIO} = 3 V$, $V_{BUS} = 0 V$ or 5 V, $V_{ASEL} = 0 V$ to 3 V, $V_{D+/R,D-/L} = 1 V$, Figure 10		4		μS
t _{OFF}	Turn-off time	$V_{AUDIO} = 3 V$, $V_{BUS} = 0 V$, $V_{ASEL} = 3 V$ to 0 V, $V_{D+/R,D-/L} = 1 V$, Figure 10		1		μs
$\begin{array}{c} C_{L(OFF)} \\ C_{R(OFF)} \end{array}$	L , R OFF capacitance	$V_{AUDIO} = 3 V, V_{BUS} = 5 V, V_{ASEL} = 0 V,$ f = 20 kHz	Switch OFF	4.5		pF
C _{L(ON)} C _{R(ON)}	L, R ON capacitance	$V_{AUDIO} = 3 V$, $V_{BUS} = 0 V$, $V_{ASEL} = 3 V$, f = 20 kHz	Switch ON	15		pF
O _{ISO}	OFF Isolation		Switch OFF	-83		dB
X _{TALK}	Crosstalk		-83		dB	
THD	Total harmonic distortion	V_{AUDIO} = 3 V, V_{BUS} = 0 V, V_{ASEL} = 3 V, f = 20 Hz to 2 R_L = 600 \Omega, V_{IN} = 2 Vpp	0.05		%	
SUPPLY						
V _{AUDIO}	Power supply voltage			2.7	5.5	V
I _{AUDIO}	Positive supply current	$V_{AUDIO} = 3.6$ V, $V_{BUS} = 0$ or 5 V, $V_{ASEL} = 0$ to 3.6 V,	I _{OUT} = 0	6	10	μΑ
I _{OFF}	Power off leakage current	$V_{AUDIO} = 0 \text{ V}, V_{D+/R, D-/L, D+, D-, L, R} = 0 \text{ to } 5.5 \text{ V}$			±10	μΑ

www.ti.com

SCDS306-OCTOBER 2010

Figure 3. THD vs Frequency for Audio Switch

Figure 4. Gain vs Frequency for USB Switch

8

SCDS306-OCTOBER 2010

Figure 5. Off Isolation vs Frequency for Audio Switch

Figure 7. Cross Talk vs Frequency for Audio Switch

Figure 8. Cross Talk vs Frequency for USB Switch

www.ti.com

SCDS306-OCTOBER 2010

TYPICAL CHARACTERISTICS (continued)

Figure 9. USB 2.0 Eye Pattern for USB Switch

www.ti.com

SCDS306-OCTOBER 2010

PARAMETER MEASUREMENT INFORMATION (Enable and Disable Times)

TEST	$V_{AUDIO}(V_{DD})$	S1	RL	V _{in}	CL	V_{Δ}
t _{PLZ} /t _{PZL}	3.3 V	$2 \cdot \mathbf{V}_{DD}$	200 Ω	GND	10 pF	0.3 V
t _{PHZ} /t _{PZH}	3.3 V	GND	200 Ω	V _{DD}	10 pF	0.3 V

ENABLE AND DISABLE TIMES

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_r \leq 2.5 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} or t_{OFF} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} or t_{ON} .

Figure 10. Test Circuit and Voltage Waveforms

STRUMENTS

XAS

SCDS306-OCTOBER 2010

PARAMETER MEASUREMENT INFORMATION (Skew)

TEST	V _{AUDIO} (V _{DD})	S1	RL	V _{in}	CL
t _{sk(o)}	$\textbf{3.3 V} \pm \textbf{0.3 V}$	Open	200 Ω	V_{DD} or GND	10 pF
t _{sk(p)}	3.3 V \pm 0.3 V	Open	200 Ω	V _{DD} or GND	10 pF

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time, with one transition per measurement.

Figure 11. Test Circuit and Voltage Waveforms

SCDS306-OCTOBER 2010

www.ti.com

PARAMETER MEASUREMENT INFORMATION

A. C_L includes probe and jig capacitance.

Figure 12. Test Circuit for Frequency Response (BW)

Frequency response is measured at the output of the ON channel. For example, when $V_{SEL} = 0$ and A_0 is the input, the output is measured at $0B_1$. All unused analog I/O ports are left open.

HP8753ES Setup

Average = 4 RBW = 3 kHz V_{BIAS} = 0.35 V ST = 2 s P1 = 0 dBM

TEXAS INSTRUMENTS

www.ti.com

SCDS306-OCTOBER 2010

PARAMETER MEASUREMENT INFORMATION (continued)

- A. C_L includes probe and jig capacitance.
- B. A 50- Ω termination resistor is needed to match the loading of the network analyzer.

Figure 13. Test Circuit for Crosstalk (X_{TALK})

Crosstalk is measured at the output of the nonadjacent ON channel. For example, when $V_{SEL} = 0$ and A_1 is the input, the output is measured at A_3 . All unused analog input (A) ports are connected to GND, and output (B) ports are left open.

HP8753ES Setup

Average = 4 RBW = 3 kHz $V_{BIAS} = 0.35 V$ ST = 2 s P1 = 0 dBM

www.ti.com

SCDS306-OCTOBER 2010

A. C_L includes probe and jig capacitance.

B. A 50- Ω termination resistor is needed to match the loading of the network analyzer.

Figure 14. Test Circuit for OFF Isolation (O_{ISO})

OFF isolation is measured at the output of the OFF channel. For example, when $V_{SEL} = GND$ and A_1 is the input, the output is measured at 1B₂. All unused analog input (A) ports are connected to ground, and output (B) ports are left open.

HP8753ES Setup

Average = 4 RBW = 3 kHz $V_{BIAS} = 0.35 V$ ST = 2 s P1 = 0 dBM

20-May-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)		(3)		(4/5)	
TS5USBA224RSWR	ACTIVE	UQFN	RSW	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	A5R	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TEXAS INSTRUMENTS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal	

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5USBA224RSWR	UQFN	RSW	10	3000	180.0	8.4	1.59	2.09	0.72	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

31-Mar-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5USBA224RSWR	UQFN	RSW	10	3000	202.0	201.0	28.0

MECHANICAL DATA

This package complies to JEDEC MO-288 variation UDEE, except minimum package height.

RSW (R-PUQFN-N10)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- E. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications					
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive				
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications				
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers				
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps				
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy				
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial				
Interface	interface.ti.com	Medical	www.ti.com/medical				
Logic	logic.ti.com	Security	www.ti.com/security				
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense				
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video				
RFID	www.ti-rfid.com						
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com				
Wireless Connectivity	www.ti.com/wirelessconnectivity						

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated