SGLS134D - SEPTEMBER 2002 - REVISED JANUARY 2013

- Controlled Baseline
 - One Assembly/Test Site, One Fabrication Site
- Extended Temperature Performance of -55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product Change Notification
- Qualification Pedigree[†]
- Optimized for Off-line and DC-to-DC Converters
- Low Start Up Current (<0.5 mA)
- Trimmed Oscillator Discharge Current

[†] Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

- Automatic Feed Forward Compensation
- Pulse-by-Pulse Current Limiting
- Enhanced Load Response Characteristics
- Under-Voltage Lockout With Hysteresis
- Double Pulse Suppression
- High Current Totem Pole Output
- Internally Trimmed Bandgap Reference
- 500 kHz Operation
- Low R_O Error Amp

description

The UC1842A/3A/4A/5A family of control ICs is a pin-for-pin compatible improved version of the UC3842/3/4/5 family. Providing the necessary features to control current mode switched mode power supplies, this family has the following improved features. Start up current is guaranteed to be less than 0.5 mA. Oscillator discharge is trimmed to 8.3 mA. During under voltage lockout, the output stage can sink at least 10 mA at less than 1.2 V for V_{CC} over 5 V.

The difference between members of this family are shown in the table below.

PART NUMBER	UVLO ON	UVLO OFF	MAXIMUM DUTY CYCLE
UC1842A	16 V	10 V	<100%
UC1843A	8.5 V	7.9 V	<100%
UC1844A	16 V	10 V	<50%
UC1845A	8.5 V	7.9 V	<50%

ORDERING INFORMATION [‡]									
T _A	PACK	AGE [‡]	ORDERABLE PART NUMBER	TOP-SIDE MARKING					
–55°C to 125°C	SOP – D	Tape and reel	UC1842AMDREP	1842AME					
–55°C to 125°C	SOP – D	Tape and reel	UC1843AMDREP	1843AME					
–55°C to 125°C	SOP – D	Tape and reel	UC1844AMDREP	1844AME					
–55°C to 125°C	SOP – D	Tape and reel	UC1845AMDREP	1845AME					

[‡] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2006, Texas Instruments Incorporated

SGLS134D - SEPTEMBER 2002 - REVISED JANUARY 2013

block diagram

Ordering Information

SGLS134D - SEPTEMBER 2002 - REVISED JANUARY 2013

absolute maximum ratings over operating	g free-air temperature range	• (unless otherwise noted) ^{†‡}
---	------------------------------	--

V _{CC} voltage (low impedance source)	30 V
V _{CC} voltage (I _{CC} mA)	self limiting
Output current, I _O	±1 Ā
Output energy (capacitive load)	5μJ
Analog Inputs (pins 2, 3)	–0.3 V to 6.3 V
Error Amp Output Sink current	10 mA
Power Dissipation at T _A < 25°C	1 W
Package thermal impedance, θ _{JA} (see Note 1):	
Storage temperature range, T _{stg}	65°C to 150°C
Maximum junction temperature, TJ	150°C
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[‡] Unless otherwise indicated, voltages are reference to ground and currents are positive into and negative out of the specified terminals.

NOTE 1: Long term high-temperature storage and/or extended use at maximum recommended operating conditions may result in a reduction of overall device life. See http://www.ti.com/ep_quality for additional information on enhanced plastic packaging.

electrical characteristics, $T_A = -55^{\circ}C$ to $125^{\circ}C$ for the UC184xAM-EP, $V_{CC} = 15$ V (see Note 1), $R_T = 10 \ k\Omega$, $C_T = 3.3 \ nF$, and $T_A = T_J$ (unless otherwise stated)

PARAMETER	TEST CONDITIO	MIN	ТҮР	MAX	UNITS	
Reference Section						
Output voltage	$T_{J} = 25^{\circ}C, I_{O} = 1 \text{ mA}$		4.95	5	5.05	V
Line regulation voltage	V _{IN} = 12 V to 25 V			6	20	mV
Load regulation voltage	$I_0 = 1 \text{ mA to } 20 \text{ mA}$			6	25	mV
Temperature stability	See Notes NO TAG and NO TAG			0.2	0.4	mV/°C
Total output variation voltage	Line, Load, Temp.	4.9		5.1	V	
Output noise voltage	f = 10 Hz to 10 kHz, See Note NO TAG	$T_J = 25^{\circ}C$		50		μV
Long term stability	1000 hours, See Note 2	$T_A = 125^{\circ}C$		5	25	mV
Output short-circuit current			-30	-100	-180	mA
Oscillator Section						
Initial accuracy	See Note NO TAG	$T_J = 25^{\circ}C$	47	52	57	kHz
Voltage stability	V_{CC} = 12 V to 25 V			0.2%	1%	
Temperature stability	T _A = MIN to MAX, See Note 2		5%			
Amplitude peak-to-peak	V pin 4, See Note 2		1.7		V	
Discharge europt		$T_{\rm J} = 25^{\circ} {\rm C}$ 7.		8.3	8.8	~
	v pin $4 = 2$ v, see Note 3	T _J = Full range	7.5		8.8	ΠA

NOTES: 1. Adjust V_{CC} above the start threshold before setting at 15 V.

2. Not production tested.

3. This parameter is measured with $R_T = 10 \text{ k}\Omega$ to V_{REF} . This contributes approximately 300 μ A of current to the measurement. The total current flowing into the $R_{T/C}$ pin will be approximately 300 μ A higher than the measured value.

SGLS134D - SEPTEMBER 2002 - REVISED JANUARY 2013

electrical characteristics, $T_A = -55^{\circ}C$ to $125^{\circ}C$ for the UC184xAM-EP, $V_{CC} = 15$ V (see Note 1), $R_T = 10 \ k\Omega$, $C_T = 3.3 \ nF$, and $T_A = T_J$ (unless otherwise stated)

PARAMETER	TEST CONDITIONS			ТҮР	MAX	UNITS
Error Amplifier Section	·					
Input voltage	COMP = 2.5 V		2.45	2.5	2.55	V
Input bias current				-0.3	-1	μA
Open loop voltage gain (A _{VOL)}	$V_0 = 2 V \text{ to } 4 V$		65	90		dB
Unity gain bandwidth	See Note 2	$T_J = 25^{\circ}C$	0.7	1		MHz
PSRR	V_{CC} = 12 V to 25 V		60	70		dB
Output sink current	FB = 2.7 V, COMP = 1.1 V		2	6		mA
Output source current	FB = 2.3 V, COMP = 5 V		-0.5	-0.8		mA
V _{OUT} high	FB = 2.3 V, R _L = 15 k Ω to GND		5	6		V
V _{OUT} low	FB = 2.7 V, R _L = 15 k Ω to V _{REF}			0.7	1.1	V
Current Sense Section						
Gain	See Note 3 and Note 4		2.85	3	3.15	V/V
Maximum input signal	COMP = 5 V, See Note 3		0.9	1	1.1	V
PSRR	V_{CC} = 12 V to 25 V, See Note 3			70		dB
Input bias current				-2	-10	μA
Delay to output	I _{SENSE} = 0 V to 2 V, See Note 2		150	300	ns	
Output Section (OUT)						
	I _{OUT} = 20 mA			0.1	0.4	
Low-level output voltage	I _{OUT} = 200 mA			15	2.2	v
	I _{OUT} = -20 mA		13	13.5		
High-level output voltage	I _{OUT} = -200 mA	12	13.5		v	
Rise time	C _L = 1 nF, See Note 2	$T_J = 25^{\circ}C$		50	150	ns
Fall time	C _L = 1 nF, See Note 2	$T_J = 25^{\circ}C$		50	150	ns
UVLO saturation	V _{CC} = 5 V, I _{OUT} = 10 mA			0.7	1.2	V
Undervoltage Lockout Section	·					
		UC1842A, UC1844A	15	16	17	
Start threshold		UC1843A, UC1845A	7.8	8.4	9	V
		UC1842A, UC1844A	9	10	11	
Minimum operation voltage after turn on		UC1843A, UC1845A	7	7.6	8.2	V

NOTES: 1. Adjust V_{CC} above the start threshold before setting at 15 V.

2. Not production tested.

3. Parameter measured at trip point of latch with V_{FB} at 0 V.

4. Gain is defined by: $A = \frac{\Delta V_{COMP}}{\Delta V_{COMP}}$; $0 \le V_{SENSE} \le 0.8 V.$

 $= \Delta V_{SENSE}$

SGLS134D - SEPTEMBER 2002 - REVISED JANUARY 2013

electrical characteristics, $T_A = -55^{\circ}C$ to $125^{\circ}C$ for the UC184xAM-EP, $V_{CC} = 15$ V (see Note 1), $R_T = 10 \ k\Omega$, $C_T = 3.3 \ nF$, and $T_A = T_J$ (unless otherwise stated)

PARAMETER	TEST CONDIT	MIN	ТҮР	MAX	UNITS	
PWM Section						
		UC1842A, UC1843A	94%	96%	100%	
Maximum duty cycle		UC1844A, UC1845A	47%	48%	50%	
Minimum duty cycle					0%	
Total Standby Current						
Start-up current				0.3	0.5	mA
Operating supply current	FB = 0 V, SENSE = 0 V			11	17	mA
V _{CC} internal zener voltage	I _{CC} = 25 mA		30	34		V

NOTES: 1. Adjust V_{CC} above the start threshold before setting at 15 V.

PARAMETER MEASUREMENT INFORMATION

Error Amp can source and sink up to 0.5 mA and sink up to 2 mA.

Figure 1. Error Amp Configuration

SGLS134D - SEPTEMBER 2002 - REVISED JANUARY 2013

PARAMETER MEASUREMENT INFORMATION

Peak Current (Is) is determined by the following formula:

Ismax' $\frac{1V}{RS}$

A small RC filter may be required to suppress switch transients.

Figure 3. Current Sense Circuit

SGLS134D - SEPTEMBER 2002 - REVISED JANUARY 2013

PARAMETER MEASUREMENT INFORMATION

APPLICATION INFORMATION

Oscillator Frequency vs Timing Resistance 100.0 VREF 8 Maximum Duty Cycle (%) Oscillator Frequency (Hz) 80.0 1M Rт RT/CT 4 60.0 Ст 100k 40.0 GROUND 5 10k 20.0 For RT > 5k f $\sim \frac{1.72}{RTCT}$ 300 1.00k 3.00k 10.0k 30.0k 100k 300 1.00k 3.00k 10.0k 30.0k 100k RT (ohms) RT (ohms)

Figure 6. Oscillator

Maximum Duty Cycle vs Timing Resistor

SGLS134D - SEPTEMBER 2002 - REVISED JANUARY 2013

APPLICATION INFORMATION

High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and 5k potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

A fraction of the oscillator ramp can be resistively summed with the current sense signal to provide slope compensation for converters requiring duty cycles over 50%. Note that capacitor, C, forms a filter with R2 to suppress the leading edge switch spikes.

SGLS134D - SEPTEMBER 2002 - REVISED JANUARY 2013

APPLICATION INFORMATION

Power Supply Specifications

- 1. Input Voltage 95VAC to 130VAC (50 Hz/60 Hz)
- 2. Line Isolation 3750 V
- 3. Switching Frequency 40 kHz
- 4. Efficiency, Full Load 70%
- 5. Output Voltage:
 - A. +5V, ±5%; 1A to 4A Load
 - B. +12V, ±3%; 0.1A to 0.3A Load Ripple voltage: 100 mV P-P Max
 - C. -12V, ±3%; 0.1A to 0.3A Load Ripple voltage: 100 mV P-P Max

Figure 9. Off-Line Flyback Regulator

www.ti.com

11-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package Qty	Eco Plan	Lead/Ball Finis	n MSL Peak Temp	Samples
	(1)		Drawing			(2)		(3)	(Requires Login)
UC1842AMDREP	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
UC1843AMDREP	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
UC1843AMDREPG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
UC1844AMDREP	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
UC1845AMDREP	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
UC1845AMDREPG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
V62/03625-01YE	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
V62/03625-02YE	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
V62/03625-03YE	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
V62/03625-04YE	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

www.ti.com

11-Jan-2013

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF UC1842A-EP, UC1843A-EP, UC1844A-EP, UC1845A-EP :

• Catalog: UC1842A, UC1843A, UC1844A, UC1845A

• Space: UC1842A-SP, UC1843A-SP, UC1844A-SP, UC1845A-SP

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UC1842AMDREP	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	4.0	12.0	Q1
UC1843AMDREP	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	4.0	12.0	Q1
UC1844AMDREP	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	4.0	12.0	Q1
UC1845AMDREP	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	4.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

11-Jan-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UC1842AMDREP	SOIC	D	8	2500	367.0	367.0	35.0
UC1843AMDREP	SOIC	D	8	2500	367.0	367.0	35.0
UC1844AMDREP	SOIC	D	8	2500	367.0	367.0	35.0
UC1845AMDREP	SOIC	D	8	2500	367.0	367.0	35.0

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconr	nectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated