

SGLS350C -JULY 2006-REVISED SEPTEMBER 2010

BACKUP-BATTERY SUPERVISORS FOR RAM RETENTION

Check for Samples: TPS3619-33-EP, TPS3619-50-EP, TPS3620-33-EP, TPS3620-50-EP

FEATURES

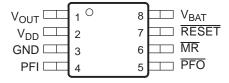
- Supply Current of 40 μA (Max)
- Battery-Supply Current of 100 nA (Max)
- Precision Supply-Voltage Monitor 3.3 V, 5 V, and Other Options on Request
- Backup-Battery Voltage Can Exceed V_{DD}
- Power-On Reset Generator with Fixed 100-ms Reset Delay Time
- Voltage Monitor for Power-Fail or Low-Battery Monitoring
- Battery Freshness Seal (TPS3619)
- Pin-to-Pin Compatible With MAX819, MAX703, and MAX704
- 8-Pin Mini Small-Outline Package (MSOP) Package

SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS

- Controlled Baseline
- One Assembly/Test Site
- One Fabrication Site
- Available in Military (–55°C/125°C)
 Temperature Range⁽¹⁾
- Extended Product Life Cycle
- Extended Product-Change Notification
- Product Traceability
- (1) Additional temperature ranges available contact factory

APPLICATIONS

- Fax Machines
- Set-Top Boxes
- · Advanced Voice-Mail Systems
- Portable Battery-Powered Equipment
- Computer Equipment
- Advanced Modems
- Automotive Systems
- Portable Long-Time Monitoring Equipment
- Point-of-Sale Equipment


DESCRIPTION

The TPS3619 and TPS3620 families of supervisory circuits monitor and control processor activity by providing backup-battery switchover for data retention of CMOS RAM.

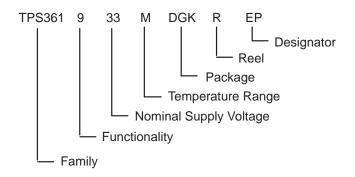
During power on, \overline{RESET} is asserted when the supply voltage (V_{DD} or V_{BAT}) becomes higher than 1.1 V. Thereafter, the supply voltage supervisor monitors V_{DD} and keeps \overline{RESET} output active as long as V_{DD} remains below the threshold voltage (V_{IT}). An internal timer delays the return of the output to the inactive state (high) to ensure proper system reset. The delay time starts after V_{DD} has risen above V_{IT}. When the supply voltage drops below V_{IT}, the output becomes active (low) again.

The product spectrum is designed for supply voltages of 3.3 V and 5 V. The TPS3619 and TPS3620 are available in an 8-pin MSOP package and are characterized for operation over a temperature range of -55°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.


TYPICAL OPERATING CIRCUIT Power **TPS3619** Microcontroller **TPS3620 Backup Battery** Microprocessor V_{DD} V_{BAT} External Ī Source RESET RESET PFO **Switchover** Capacitor MR V_{OUT} v_{cc} Manual **GND GND** Reset 丰

PACKAGE INFORMATION(1)

T _A	PRODUCT	PACKAGE MARKING	ORDERABLE PART NUMBER	TRANSPORT MEDIA, QUANTITY	
	TDC2640.22	BZP	TPS3619-33MDGKEP ⁽²⁾	Tube, 80	
	TPS3619-33	DZP	TPS3619-33MDGKREP	Tape and reel, 2500	
	TPS3619-50	TBD	TPS3619-50MDGK ⁽²⁾	Tube, 80	
–55°C to 125°C	1753019-50	טפו	TPS3619-50MDGKREP ⁽²⁾	Tape and reel, 2500	
-55 6 10 125 6			TPS3620-33MDGKTEP	Tape and reel, 250	
	TPS3620-33	ы	TPS3620-33MDGKREP	Tape and reel, 2500	
	TDC2620 F0	TBD	TPS3620-50MDGKTEP ⁽²⁾	Tape and reel, 250	
	TPS3620-50	עפו	TPS3620-50MDGKREP (2)	Tape and reel, 2500	

- (1) For the most current specifications and package information, see the Package Option Addendum located at the end of this data sheet or see the TI web site at www.ti.com.
- (2) Product Preview. Parameters in electrical characteristics are subject to change.

Standard and Application-Specific Versions

DEVICE NAME	NOMINAL VOLTAGE ⁽¹⁾ , V _{NOM}
TPS3619-33 DGK	3.3 V
TPS3619-50 DGK	5 V
TPS3620-33 DGK	3.3 V
TPS3620-50 DGK	5 V

 For other threshold voltage versions, contact the local TI sales office for availability and lead time.

Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted)(1)

		UNIT
Complement	V _{DD} (2)	7 V
Supply voltage	MR and PFI pins ⁽²⁾	-0.3 V to (V _{DD} + 0.3 V)
Continuous sutput surrent I	V _{OUT}	400 mA
Continuous output current, I _O	All other pins ⁽²⁾	±10 mA
Continuous total power dissipation		See Dissipation Ratings Table
Operating free-air temperature range, T _A		−55°C to 125°C
Storage temperature range, T _{stg}		−65°C to 150°C
Lead temperature soldering 1,6 mm (1/16 in) from case for 10 s		260°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Dissipation Ratings

PACKAGE	T _A < 25°C	DERATING FACTOR	T _A = 70°C	T _A = 85°C	T _A = 125°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING	POWER RATING
DGK	470 mW	3.76 mW/°C	301 mW	241 mW	93.98 mW

Recommended Operating Conditions

at specified temperature range

		MIN	MAX	UNIT
V_{DD}	Supply voltage	1.65	5.5	V
V_{BAT}	Battery supply voltage	1.5	5.5	V
V_{I}	Input voltage	0	$V_{DD} + 0.3$	V
V_{IH}	High-level input voltage	$0.7 \times V_{DD}$		V
V_{IL}	Low-level input voltage		$0.3 \times V_{DD}$	V
Io	Continuous output current at V _{OUT}		300	mA
	Input transition rise and fall rate at MR		100	ns/V
$\Delta t/\Delta V$	Slew rate at V _{DD} or V _{BAT}		1	V/μs
T _A	Operating free-air temperature	– 55	125	°C

⁽²⁾ All voltage values are with respect to GND. For reliable operation, the device must not be continuously operated at 7 V for more than t = 1000 h.

Electrical Characteristics

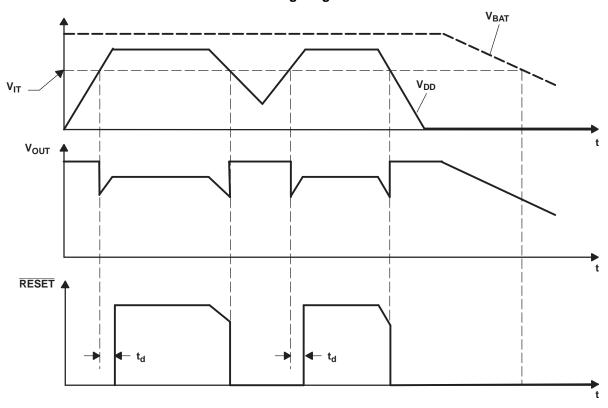
over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CON	IDITIONS	MIN	TYP	MAX	UNIT	
		DECET	$V_{DD} = 3.3 \text{ V}, I_{OH} = -$	-2 mA	V _{DD} - 0.4				
		RESET	$V_{DD} = 5 \text{ V}, I_{OH} = -3$		V _{DD} - 0.4				
V _{OH}	High-level output voltage		V _{DD} = 1.8 V, I _{OH} = -	-20 μΑ	$V_{DD} - 0.3$			V	
		PFO	$V_{DD} = 3.3 \text{ V}, I_{OH} = -80 \mu\text{A}$ $V_{DD} - 0.4$						
			$V_{DD} = 5 \text{ V}, I_{OH} = -1$	20 μΑ	V _{DD} - 0.4				
			$V_{DD} = 1.8 \text{ V}, I_{OL} = -$	400 μΑ			0.2		
V_{OL}	Low-level output voltage	RESET, PFO	$V_{DD} = 3.3 \text{ V}, I_{OL} = 2$! mA			0.4	V	
			$V_{DD} = 5 \text{ V}, I_{OL} = 3 \text{ n}$	nA			0.4		
V _{res}	Power-up reset voltage ⁽¹⁾		$I_{OL} = 20 \mu A, V_{BAT} > V_{DD} > 1.1 V$	1.1 V or			0.4	V	
			$I_{OUT} = 8.5 \text{ mA}, V_{BAT}$ $V_{DD} = 1.8 \text{ V}$	-= 0 V,	V _{DD} – 50				
	Normal mode		I _{OUT} = 125 mA, V _{BA} V _{DD} = 3.3 V	_T = 0 V,	V _{DD} – 150				
V _{OUT}			I _{OUT} = 190 mA, V _{BA} V _{DD} = 5 V	_T = 0 V,	V _{DD} – 200			mV	
	Battery-backup mode		$I_{OUT} = 0.5 \text{ mA}, V_{BAT}$ $V_{DD} = 0 \text{ V}$	= 1.5 V,	V _{BAT} – 50				
	, , , , , , , , , , , , , , , , , , , ,		I _{OUT} = 7.5 mA, V _{BAT} = 3.3 V		V _{BAT} – 150				
	V _{DD} to V _{OUT} on resistance		V _{DD} = 5 V			0.6	1	_	
r _{DS(on)}	V _{BAT} to V _{OUT} on resistance		V _{DD} = 3.3 V			8	20	Ω	
.,		TPS36XX-33	T _A = -55°C to 125°C		2.88	2.93	3.05	V	
V_{IT-}	Negative-going input threshold voltage ⁽²⁾	pative-going input threshold TPS36XX-50			4.46	4.55	4.64		
V_{PFI}	voltago		$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$	C	1.13	1.15	1.185	V	
			1.65 V < V _{IT} < 2.5 V	,		20			
		V _{IT}	2.5 V < V _{IT} < 3.5 V			40			
V_{hys}	Hysteresis		3.5 V < V _{IT} < 5.5 V			60		mV	
		PFI				12			
		VBSW ⁽³⁾	V _{DD} = 1.8 V			55			
Ін	High-level input current	MR	$\overline{MR} = 0.7 \times V_{DD}$	$V_{DD} = 5 V$	-30		-76	μΑ	
IL	Low-level input current	MR	$\overline{MR} = 0 \text{ V},$	$V_{DD} = 5 V$	-110		-255	μΑ	
l _I	Input current	PFI			-25		25	nA	
I _{OS} S				$V_{DD} = 1.8 \text{ V}$			-0.3		
	Short-circuit current	PFO	PFO = 0 V	$V_{DD} = 3.3 \text{ V}$			-1.1	1 mA	
				$V_{DD} = 5 V$			-2.4		
I _{DD} V _{DD} supply current			$V_{OUT} = V_{DD}$				40	μΑ	
DD	VDD Supply Culterit		$V_{OUT} = V_{BAT}$				40	μΛ	
(DAT)	V _{BAT} supply current		$V_{OUT} = V_{DD}$		-0.1		0.1	μА	
I _(BAT)	*BAI adabià aquour		$V_{OUT} = V_{BAT}$				0.5	μΑ	
Cı	Input capacitance		$V_I = 0 V \text{ to } 5 V$			5		pF	

The lowest supply voltage at which \overline{RESET} becomes active. $t_{r,VDD} \ge 15~\mu s/V$. To ensure the best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 μF) should be placed near the supply terminals. For $V_{DD} < 1.6~V$, V_{OUT} switches to V_{BAT} , regardless of V_{BAT} .

Timing Requirements

at $R_1 = 1 \text{ M}\Omega$, $C_1 = 50 \text{ pF}$, $T_A = 25^{\circ}\text{C}$


PARAMETER		1	TEST CONDITIONS	MIN MAX	UNIT
	Duloo width	at V _{DD}	$V_{IH} = V_{IT} + 0.2 \text{ V}, V_{IL} = V_{IT} - 0.2 \text{ V}$	6	μS
ı _w	Pulse width	at MR	$V_{DD} = V_{IT} + 0.2 \text{ V}, V_{IL} = 0.3 \text{ x } V_{DD}, V_{IH} = 0.7 \text{ x } V_{DD}$	100	ns

Switching Characteristics

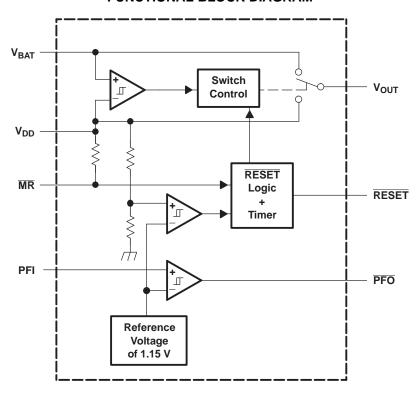
at $R_1 = 1 \text{ M}\Omega$, $C_1 = 50 \text{ pF}$, $T_A = -55^{\circ}\text{C}$ to 125°C

	PARAMETE	R	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _d	Delay time		$V_{DD} \ge V_{IT} + 0.2 \text{ V}, \overline{\text{MR}} \ge 0.7 \times V_{DD},$ See timing diagram	60	100	140	ms
		V _{DD} to RESET	$V_{IL} = V_{IT} - 0.4 \text{ V}, V_{IH} = V_{IT} + 0.4 \text{ V}$		2	5	
t _{PHL}	Propagation (delay) time,	PFI to PFO delay	$V_{IL} = V_{PFI} - 0.35 \text{ V}, V_{IH} = V_{PFI} + 0.35 \text{ V}$		3	5	นร
THL	high-to-low-level output	MR to RESET	$V_{DD} \ge V_{IT} + 0.2 \text{ V}, V_{IL} = 0.3 \times V_{DD}, V_{IH} = 0.7 \times V_{DD}$		0.1	1	μο

Timing Diagram

Table 1. FUNCTION TABLE

$V_{DD} > V_{IT}$	$V_{DD} > V_{BAT}$	MR	V _{OUT}	RESET
0	0	L	V_{BAT}	L
0	0	Н	V_{BAT}	L
0	1	L	V_{DD}	L
0	1	Н	V_{DD}	L
1	0	L	V_{DD}	L
1	0	Н	V_{DD}	Н
1	1	L	V_{DD}	L
1	1	Н	V_{DD}	Н


PFI > V _{PFI}	PFO	
0	L	
1	Н	
CONDITION: $V_{DD} > V_{DD}(MIN)$		

TERMINAL FUNCTIONS

TERI	TERMINAL		DECORPORION	
NAME	NO.	1/0	DESCRIPTION	
GND	3	ı	Ground	
MR	6	1	Manual reset	
PFI	4	1	Power-fail comparator input	
PFO	5	0	Power-fail comparator output	
RESET	7	0	Active-low reset	
V_{BAT}	8	1	Backup battery	
V_{DD}	2	I	Supply input voltage	
V _{OUT}	1	0	Supply output voltage	

FUNCTIONAL BLOCK DIAGRAM

50

75

TYPICAL CHARACTERISTICS

STATIC DRAIN-SOURCE ON-STATE RESISTANCE $(V_{DD} \text{ to } V_{OUT})$

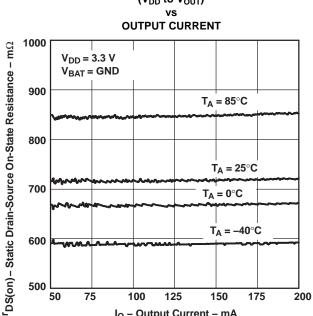
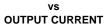


Figure 1.

125

IO - Output Current - mA


150

175

200

100

STATIC DRAIN-SOURCE ON-STATE RESISTANCE (V_{BAT} to V_{OUT})

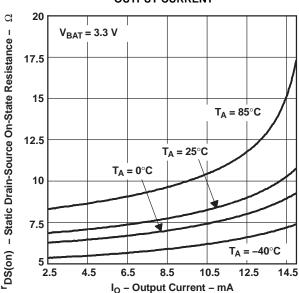
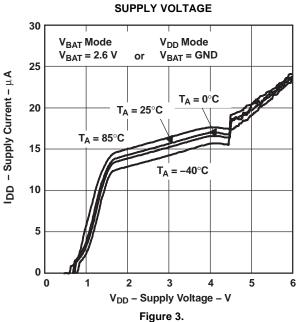



Figure 2.

SUPPLY CURRENT

NORMALIZED THRESHOLD AT RESET

FREE-AIR TEMPERATURE

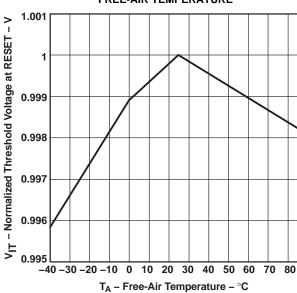
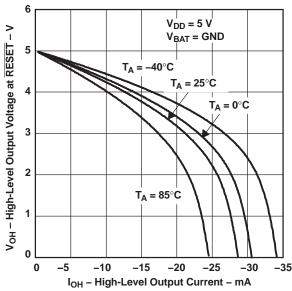
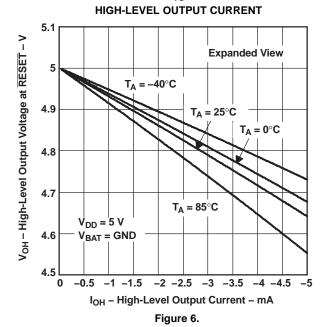


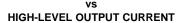
Figure 4.


HIGH-LEVEL OUTPUT VOLTAGE AT RESET



TYPICAL CHARACTERISTICS (continued)

HIGH-LEVEL OUTPUT VOLTAGE AT RESET


HIGH-LEVEL OUTPUT CURRENT $V_{DD} = 5 V$ V_{BAT} = GND

HIGH-LEVEL OUTPUT VOLTAGE AT PFO

Figure 5.

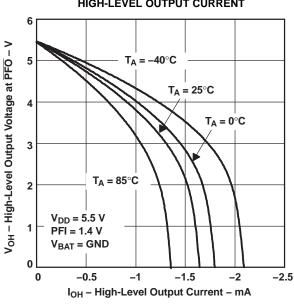
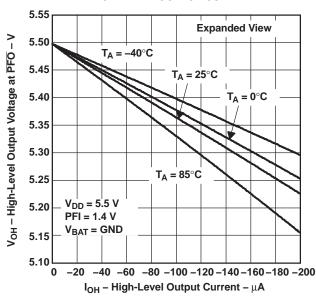
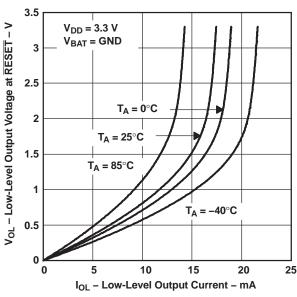


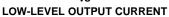
Figure 7.

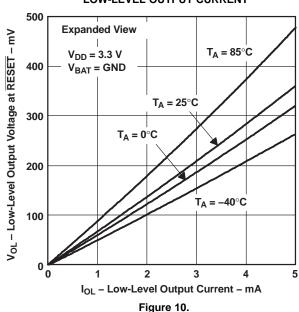
HIGH-LEVEL OUTPUT VOLTAGE AT PFO

HIGH-LEVEL OUTPUT CURRENT



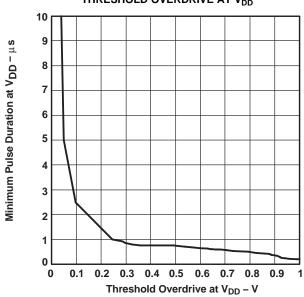

Figure 8.


TYPICAL CHARACTERISTICS (continued)


LOW-LEVEL OUTPUT VOLTAGE AT RESET

LOW-LEVEL OUTPUT CURRENT

LOW-LEVEL OUTPUT VOLTAGE AT RESET



MINIMUM PULSE DURATION AT VDD

Figure 9.

THRESHOLD OVERDRIVE AT V_{DD}

MINIMUM PULSE DURATION AT PFI

THRESHOLD OVERDRIVE AT PFI

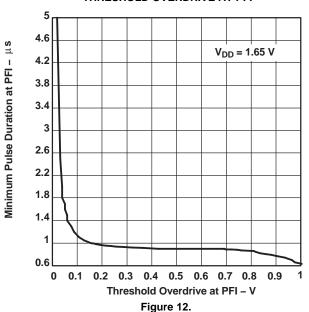


Figure 11.

DETAILED DESCRIPTION

Battery Freshness Seal (TPS3619)

The battery freshness seal of the TPS3619 family disconnects the backup battery from internal circuitry until it is needed. This function prevents the backup battery from being discharged until the final product is put to use. The following steps explain how to enable the freshness seal mode.

- 1. Connect V_{BAT} ($V_{BAT} > V_{BAT}$ min)
- 2. Ground PFO
- 3. Connect PFI to V_{DD} (PFI = V_{DD})
- 4. Connect V_{DD} to power supply $(V_{DD} > V_{IT})$ and retain for 5 ms < t < 35 ms

The battery freshness seal mode is removed automatically by the positive-going edge of \overline{RESET} when V_{DD} is applied.

Power-Fail Input/Output Comparator (PFI and PFO)

An additional comparator is provided to monitor voltages other than the nominal supply voltage. The PFI is compared with an internal voltage reference of 1.15 V. If the input voltage falls below the power-fail threshold $(V_{IT(PFI)})$ of 1.15 V (typ), the PFO goes low. If $V_{IT(PFI)}$ goes above $V_{(PFI)}$ plus about 12-mV hysteresis, the output returns to high. By connecting two external resistors, it is possible to supervise any voltages above $V_{(PFI)}$. The sum of both resistors should be about 1 M Ω , to minimize power consumption and also to ensure that the current in the PFI pin can be ignored, compared with the current through the resistor network. The tolerance of the external resistors should be not more than 1%, to ensure minimal variation of sensed voltage. If the power-fail comparator is unused, PFI should be connected to ground and \overline{PFO} left unconnected.


Backup-Battery Switchover

In case of a brownout or power failure, it may be necessary to preserve the contents of RAM. If a backup battery is installed at V_{BAT} , the device automatically switches the connected RAM to backup power when V_{DD} fails. In order to allow the backup battery (e.g., a 3.6-V lithium cell) to have a higher voltage than V_{DD} , these supervisors do not connect V_{BAT} to V_{OUT} when V_{BAT} is greater than V_{DD} . V_{BAT} only connects to V_{OUT} (through a 15- Ω switch) when V_{DD} falls below the V_{IT} and V_{BAT} is greater than V_{DD} . When V_{DD} recovers, switchover is deferred, either until V_{DD} crosses V_{BAT} or until V_{DD} rises above V_{IT} . V_{OUT} connects to V_{DD} through a 1- Ω (max) PMOS switch when V_{DD} crosses the reset threshold.

Table 2. FUNCTION TABLE

$V_{DD} > V_{BAT}$	$V_{DD} > V_{IT}$	V _{OUT}
1	1	V_{DD}
1	0	V_{DD}
0	1	V_{DD}
0	0	V_{BAT}

V_{BAT} – Backup-Battery Supply Voltage – V

Figure 13. Normal Supply Voltage vs Backup-Battery Supply Voltage

16-Aug-2012

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPS3619-33MDGKREP	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TPS3620-33MDGKREP	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TPS3620-33MDGKTEP	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
V62/06670-01XE	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
V62/06670-03XE	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

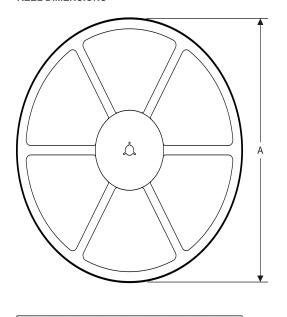
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

16-Aug-2012

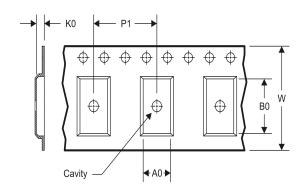
OTHER QUALIFIED VERSIONS OF TPS3619-33-EP, TPS3620-33-EP:

• Catalog: TPS3619-33, TPS3620-33

NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product

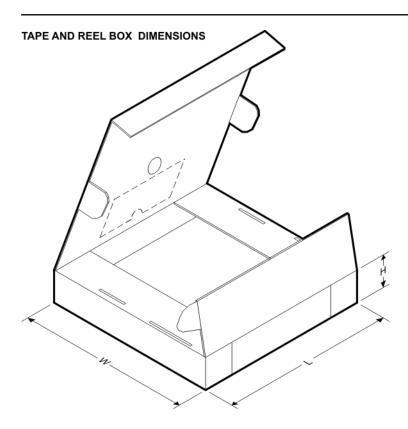
PACKAGE MATERIALS INFORMATION


www.ti.com 16-Aug-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

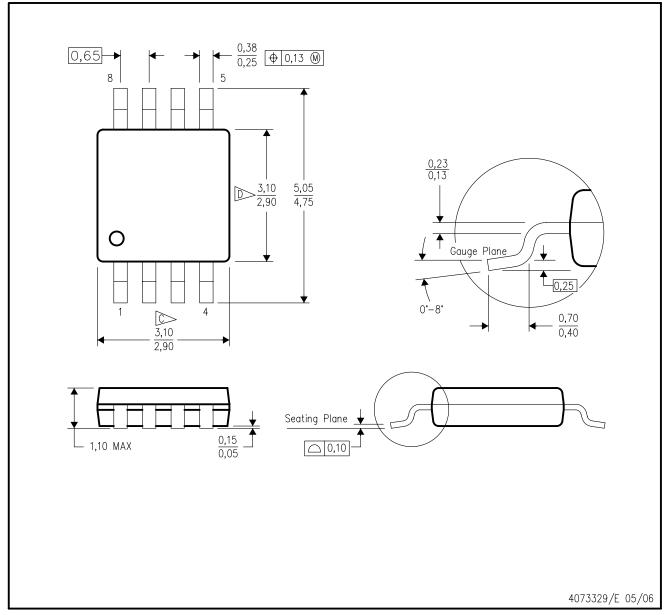

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3619-33MDGKREP	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS3620-33MDGKREP	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS3620-33MDGKTEP	VSSOP	DGK	8	250	177.8	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com 16-Aug-2012



*All dimensions are nominal

7 III GITTOTOTOTO GITO TIGITIMIGI							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS3619-33MDGKREP	VSSOP	DGK	8	2500	358.0	335.0	35.0
TPS3620-33MDGKREP	VSSOP	DGK	8	2500	358.0	335.0	35.0
TPS3620-33MDGKTEP	VSSOP	DGK	8	250	202.0	201.0	28.0

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

roducts		Applications
udia	ununu ti com/ou dio	Automotive on

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti-rfid.com

Pr