ADS62P19

Dual-Channel, 11-Bit, 250-MSPS ADC With DDR LVDS and Parallel CMOS Outputs

Check for Samples: ADS62P19

FEATURES

- Maximum Sample Rate: 250 MSPS
- 11-Bit Resolution
- Total Power: 1.25 W at 250 MSPS
- Output Options:
- DDR LVDS and Parallel CMOS
- Programmable Gain:
- Up to 6 dB for SNR and SFDR Trade-Off
- DC Offset Correction
- Crosstalk: 90 dB
- Supports Input Clock Amplitude Down to 400 mV Pp, Differential
- Internal and External Reference Support
- Package: 9-mm $\times 9-\mathrm{mm}$ QFN-64

DESCRIPTION

The ADS62P19 is part of a family of dual-channel, 11-bit, analog-to-digital converters (ADCs) with sampling rates up to 250 MSPS. The device combines high dynamic performance and low power consumption in a compact QFN-64 package. This functionality makes the device well-suited for multicarrier, wide-bandwidth communication applications.
The ADS62P19 has gain options that can be used to improve spurious-free dynamic range (SFDR) performance at lower full-scale input ranges. The device includes a dc offset correction loop that can be used to cancel ADC offset. Both double data rate (DDR) low-voltage differential signaling (LVDS) and parallel complementary metal oxide semiconductor (CMOS) digital output interfaces are available.

Although the device includes internal references, the traditional reference pins and associated decoupling capacitors are eliminated. Nevertheless, the device can also be driven with an external reference. The device is specified over the industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

ADS62Pxx High-Speed Family

RESOLUTION	$\mathbf{2 0 0}$ MSPS	$\mathbf{2 1 0}$ MSPS	$\mathbf{2 5 0}$ MSPS
11-bit	ADS62C17	-	ADS62P19
12-bit	-	ADS62P28	ADS62P29
14-bit	-	ADS62P48	ADS62P49

Table 1. Performance Summary

AT 170-MHz INPUT	GAIN (dB)	ADS62P19	ADS62P28	ADS62P29	ADS62P48	ADS62P49
SFDR, dBc	0	75	78	75	78	
	6	82	84	82	84	
SINAD, dBFS	0	65.3	68.7	68.3	70.1	
	6	64	65.8	65.8	66.3	69.8
Analog power, W	-	1	0.92	1	0.92	

[^0]This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION ${ }^{(1)}$

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	TRANSPORT MEDIA
ADS62P19	QFN-64	RGC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Tape and Reel
ADS62P28	QFN-64	RGC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Tape and Reel
ADS62P29	QFN-64	RGC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Tape and Reel
ADS62P48	QFN-64	RGC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Tape and Reel
ADS62P49	QFN-64	RGC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Tape and Reel

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Over operating free-air temperature range, unless otherwise noted.

		VALUE	UNIT
Supply voltage range	AVDD	-0.3 V to 3.9	V
	DRVDD	-0.3 V to 2.2	V
Voltage between AGND and DRGND		-0.3 to 0.3	V
Voltage between AVDD to DRVDD	AVDD leads DRVDD during power-up and DRVDD leads AVDD during power-down	-0.3 to 4.2	V
Voltage between DRVDD to AVDD	DRVDD leads AVDD during power-up and AVDD leads DRVDD during power-down	-2.5 to 1.7	V
Voltage applied to external pin	VCM (in external reference mode)	-0.3 to 2.0	V
Voltage applied to analog input pins	INP_A, INM_A, INP_B, INM_B	-0.3 to minimum (3.6, AVDD + 0.3)	V
Voltage applied to input pins	CLKP, CLKM ${ }^{(2)}$, RESET, SCLK, SDATA, SEN, CTRL1, CTRL2, CTRL3	-0.3 to AVDD + 0.3	V
Temperature range	Operating free-air, T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
	Operating junction, T_{J}	+125	${ }^{\circ} \mathrm{C}$
	Storage, $\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Electrostatic discharge (ESD) rating	Human body model (HBM)	2	kV

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
(2) When AVDD is turned off, TI recommends switching off the input clock (or ensuring the voltage on CLKP, CLKM is $<|0.3 \mathrm{~V}|$). This setting prevents the ESD protection diodes at the clock input pins from turning on.

THERMAL INFORMATION

THERMAL METRIC ${ }^{(1)}$		ADS62P19	UNITS
		RGC PACKAGE	
		64 PINS	
$\theta_{J A}$	Junction-to-ambient thermal resistance	23.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JCtop }}$	Junction-to-case (top) thermal resistance	10.5	
$\theta_{\text {JB }}$	Junction-to-board thermal resistance	4.2	
$\Psi_{J T}$	Junction-to-top characterization parameter	0.1	
$\Psi_{\text {JB }}$	Junction-to-board characterization parameter	4.2	
$\theta_{\text {JCbot }}$	Junction-to-case (bottom) thermal resistance	0.57	

[^1]
RECOMMENDED OPERATING CONDITIONS

			MIN	TYP	MAX	UNIT
SUPPLI						
AVDD	Analog supply voltage		3.15	3.3	3.6	V
DRVDD	Digital supply voltage		1.7	1.8	1.9	V
ANALOG	INPUTS					
	Differential input voltage	range		2		$V_{\text {PP }}$
	Input common-mode vo			± 0.1		V
	Voltage applied on CM	external reference mode		0.05		V
	Maximum analog input	With $2-\mathrm{V}_{\mathrm{pp}}$ input amplitude ${ }^{(1)}$		500		MHz
	frequency	With $1-\mathrm{V}_{\mathrm{pp}}$ input amplitude ${ }^{(1)}$		800		MHz
CLOCK	UT					
		Low-speed mode disabled (default mode after reset)	>80		$250{ }^{(2)}$	MSPS
	Input clock sample rate	Low-speed mode enabled ${ }^{(3)}$	1		80	MSPS
		With multiplexed mode enabled ${ }^{(4)}$	1		65	MSPS
		Sine wave, ac-coupled	0.2	1.5		$V_{P P}$
	Input clock amplitude	LVPECL, ac-coupled		1.6		$V_{P P}$
	$\left(V_{\text {CLKP }}-V_{C L K M}\right)^{(5)(6)}$	LVDS, ac-coupled		0.7		$V_{\text {PP }}$
		LVCMOS, single-ended, ac-coupled		3.3		V
	Input clock duty cycle		40\%	50\%	60\%	
DIGITAL	OUTPUTS					
$\mathrm{C}_{\text {LOAD }}$	Maximum external load	pacitance from each output pin to DRGND		5		pF
$\mathrm{R}_{\text {LOAD }}$	Differential load resistan	between the LVDS output pairs (LVDS mode)		100		Ω
T_{A}	Operating free-air temp	ture	-40		85	${ }^{\circ} \mathrm{C}$

(1) See the Theory of Operation section for information.
(2) With LVDS interface only; maximum recommended sample rate with CMOS interface is 210 MSPS
(3) Use the ENABLE LOW SPEED MODE register bit; refer to the Serial Register Map section for information.
(4) See the Multiplexed Output Mode section for information.
(5) Refer to Figure 25.
(6) Refer to Figure 1 for the definition of clock amplitude.

ELECTRICAL CHARACTERISTICS: GENERAL

Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}, 50 \%$ clock duty cycle, $-1-\mathrm{dBFS}$ differential analog input, and internal reference mode, unless otherwise noted.
Minimum and maximum values are across the full temperature range of $\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=+85^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}$, and DRVDD = 1.8 V .

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
ANALOG INPUT					
$\mathrm{V}_{\text {ID }}$	Differential input voltage range	0-dB gain	2		$V_{P P}$
	Differential input resistance	At dc, see Figure 45	>1		$\mathrm{M} \Omega$
	Differential input capacitance	See Figure 46	3.5		pF
	Analog input bandwidth	With 25- Ω source impedance	700		MHz
	Analog input common-mode current	Per channel	3.6		$\mu \mathrm{A} / \mathrm{MSPS}$
VCM	Common-mode output voltage		1.5		V
VCM	Output current capability		± 4		mA

DC ACCURACY

Eo	Offset error		-20	± 2	20	mV
	Temperature coefficient of offset error			0.02		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
	Variation of offset error with supply			0.5		mV / V
	Two sources of gain error: internal reference inaccuracy and channel gain error					
Egref	Gain error resulting from internal reference inaccuracy alone		-1	± 0.2	1	\% FS
$\mathrm{E}_{\text {GCHAN }}$	Gain error of channel alone ${ }^{(1)}$		-1	± 0.2	1	\% FS
	Temperature coefficient of $\mathrm{E}_{\text {GCHAN }}$		0.002			$\Delta \% /{ }^{\circ} \mathrm{C}$
	Gain matching ${ }^{(2)}$	Difference in gain errors between two channels within the same device	-2		2	\%FS
		Difference in gain errors between two channels across two devices	-4		4	\%FS

POWER SUPPLY

IAVDD	Analog supply current		305	350	mA
IDRVDD	Output buffer supply current	LVDS interface with $100-\Omega$ external termination	133	175	mA
		CMOS interface, $\mathrm{f}_{\mathrm{IN}}=2 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{S}}=210 \mathrm{MSPS}$, no external load capacitance ${ }^{(3)^{(}(4)}$	91		mA
AVDD	Analog power		1.01	1.15	W
DVDD	Digital power	LVDS interface	0.24	0.315	W
	Global power down		45	100	mW

(1) This parameter is specified by design and characterization; not tested in production.
(2) For two channels within the same device, only the channel gain error matters because the reference is common for both channels.
(3) In CMOS mode, the DRVDD current scales with the sampling frequency, the load capacitance on output pins, input frequency, and the supply voltage (see Figure 31 and the CMOS Interface Power Dissipation section in the Application Information).
(4) The maximum DRVDD current with CMOS interface depends on the actual load capacitance on the digital output lines. Note that the maximum recommended load capacitance on each digital output line is 10 pF .

ELECTRICAL CHARACTERISTICS: ADS62P19

Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}, 50 \%$ clock duty cycle, $-1-\mathrm{dBFS}$ differential analog input, $0-\mathrm{dB}$ gain, and internal reference mode, unless otherwise noted. Minimum and maximum values are across the full temperature range of $\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=+85^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}$, and DRVDD $=1.8 \mathrm{~V}$.

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
SNR	Signal to noise ratio, LVDS	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$			66.5		dBFS
		$\mathrm{f}_{\mathrm{IN}}=60 \mathrm{MHz}$			66.4		dBFS
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$			66.1		dBFS
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$	0-dB gain	64.5	65.9		dBFS
			6-dB gain		64.1		dBFS
		$\mathrm{f}_{\mathrm{IN}}=230 \mathrm{MHz}$			65.4		dBFS
SINAD	Signal to noise and distortion ratio, LVDS	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$			66.5		dBFS
		$\mathrm{f}_{\mathrm{IN}}=60 \mathrm{MHz}$			66.3		dBFS
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$			65.9		dBFS
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$	0-dB gain	63.5	65.3		dBFS
			$6-\mathrm{dB}$ gain		64		dBFS
		$\mathrm{f}_{\mathrm{IN}}=230 \mathrm{MHz}$			65.2		dBFS
ENOB	Effective number of bits	$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$			10.6		LSB
DNL	Differential nonlinearity	$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$		-0.6	± 0.1		LSB
INL	Integrated nonlinearity	$\mathrm{f}_{\mathrm{N}}=170 \mathrm{MHz}$			± 0.5	± 2.5	LSB
SFDR	Spurious-free dynamic range	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$			89		dBc
		$\mathrm{f}_{\mathrm{IN}}=60 \mathrm{MHz}$			85		dBc
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$			78		dBc
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$		69.5	75		dBc
		$\mathrm{f}_{\mathrm{IN}}=230 \mathrm{MHz}$			77		dBc
	Spurious-free dynamic range (excluding HD2, HD3)	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$			98		dBc
		$\mathrm{f}_{\mathrm{IN}}=60 \mathrm{MHz}$			95		dBc
		$\mathrm{f}_{\mathrm{I}}=100 \mathrm{MHz}$			88		dBc
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$		75	88		dBc
		$\mathrm{f}_{\mathrm{IN}}=230 \mathrm{MHz}$			87		dBc
HD2	Second-order harmonic distortion	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$			93		dBc
		$\mathrm{f}_{\mathrm{IN}}=60 \mathrm{MHz}$			90		dBc
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$			90		dBc
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$		69.5	85		dBc
		$\mathrm{f}_{\mathrm{IN}}=230 \mathrm{MHz}$			85		dBc
HD3	Third-order harmonic distortion	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$			89		dBc
		$\mathrm{f}_{\mathrm{IN}}=60 \mathrm{MHz}$			85		dBc
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$			78		dBc
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$		69.5	75		dBc
		$\mathrm{f}_{\mathrm{IN}}=230 \mathrm{MHz}$			77		dBc
THD	Total harmonic distortion	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$			87		dBc
		$\mathrm{f}_{\mathrm{IN}}=60 \mathrm{MHz}$			83.5		dBc
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$			77.5		dBc
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$		68	74		dBc
		$\mathrm{f}_{\mathrm{IN}}=230 \mathrm{MHz}$			75		dBc
IMD	Two-tone intermodulation distortion	$\mathrm{f}_{1}=46 \mathrm{MHz}, \mathrm{f}_{2}=50 \mathrm{MHz}$, each tone at -7 dBFS			87		dBFS
		$\mathrm{f}_{1}=185 \mathrm{MHz}, \mathrm{f}_{2}=190 \mathrm{MHz}$, each tone at -7 dBFS			85		dBFS
	Crosstalk	Up to $200-\mathrm{MHz}$ crosstalk frequency			90		dB
	Input overload recovery	Recovery to within 1% (of final value) for 6-dB overload with sine-wave input			1		Clock cycles
PSRR	AC power-supply rejection ratio	For $100-\mathrm{mV}$ PP signal on AVDD supply			25		dB

DIGITAL CHARACTERISTICS

The dc specifications refer to the condition where the digital outputs do not switch, but are permanently at a valid logic level ' 0 ' or ' 1 '. AVDD $=3.3 \mathrm{~V}$ and DRVDD $=1.8 \mathrm{~V}$.

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL INPUTS (CTRL1, CTRL2, CTRL3, RESET, SCLK, SDATA, SEN ${ }^{(1)}$)							
V_{IH}	High-level input voltage		All digital inputs support $1.8-\mathrm{V}$ and $3.3-\mathrm{V}$ CMOS logic levels	1.3			V
VIL	Low-level input voltage		All digital inputs support 1.8-V and 3.3-V CMOS logic levels			0.4	V
I_{H}	High-level input current	SDATA, SCLK ${ }^{(2)}$	$\mathrm{V}_{\text {HIGH }}=3.3 \mathrm{~V}$		16		$\mu \mathrm{A}$
		SEN ${ }^{(3)}$	$\mathrm{V}_{\text {HIGH }}=3.3 \mathrm{~V}$		10		$\mu \mathrm{A}$
IIL	Low-level input current	SDATA, SCLK	$\mathrm{V}_{\text {LOW }}=0 \mathrm{~V}$		0		$\mu \mathrm{A}$
		SEN	$\mathrm{V}_{\text {LOW }}=0 \mathrm{~V}$		-20		$\mu \mathrm{A}$
C_{1}	Input capacitance				4		pF
DIGITAL OUTPUTS (CMOS INTERFACE: DA[10:0], DB[10:0], CLKOUT, SDOUT)							
V_{OH}	High-level output voltage		$\mathrm{l}_{\mathrm{OH}}=1 \mathrm{~mA}$	$\begin{array}{r} \text { DRVDD } \\ -0.1 \end{array}$	DRVDD		V
V_{OL}	Low-level output voltage		$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$		0	0.1	V
C_{\bigcirc}	Output capacitan	(internal to device)			2		pF
DIGITAL OUTPUTS (LVDS INTERFACE)							
$\mathrm{V}_{\text {ODH }}$	High-level output differential voltage		With external 100- Ω termination	275	350	425	mV
$\mathrm{V}_{\text {ODL }}$	Low-level output differential voltage		With external $100-\Omega$ termination	-425	-350	-275	mV
$\mathrm{V}_{\text {OCM }}$	Output common-mode voltage			1	1.15	1.4	V
C_{0}	Output capacitance		Capacitance inside the device from each output to ground		2		pF

(1) SCLK, SDATA, and SEN function as digital input pins in serial configuration mode.
(2) SDATA, SCLK, RESET, CTRL1, CTRL2, and CTRL3 have an internal $100-\mathrm{k} \Omega$ pull-down resistor.
(3) SEN has an internal $100-\mathrm{k} \Omega$ pull-up resistor to AVDD. SEN can also be driven by $1.8-\mathrm{V}$ or $3.3-\mathrm{V}$ CMOS buffers because the pull-up resistor is weak.

TIMING REQUIREMENTS: LVDS AND CMOS MODES ${ }^{(1)}$

Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, sampling frequency $=250 \mathrm{MSPS}$, sine-wave input clock, $1.5-V_{\text {PP }}$ clock amplitude, $C_{\text {LOAD }}=5 \mathrm{pF}^{(2)}$, and $\mathrm{R}_{\text {LOAD }}=100 \Omega^{(3)}$, unless otherwise noted. Minimum and maximum values are across the full temperature range of $\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=+85^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}$, and DRVDD $=1.7 \mathrm{~V}$ to 1.9 V .

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{a}	Aperture delay		0.7	1.2	1.7	ns
	Aperture delay matching	Between two channels within the same device		± 50		ps
t_{j}	Aperture jitter			145		$\mathrm{f}_{\mathrm{S}} \mathrm{RMS}$
Wake-up time		Time to valid data after exiting STANDBY mode		1	3	$\mu \mathrm{s}$
		Time to valid data after exiting global power-down		20	50	$\mu \mathrm{s}$
		Time to valid data after stopping and restarting the input clock		10		Clock cycles
	ADC latency ${ }^{(4)}$			22		Clock cycles
DDR LVDS MODE ${ }^{(5)}$						
$\mathrm{t}_{\text {su }}$	Data setup time	Data valid ${ }^{(6)}$ to CLKOUTP zero-crossing	0.55	0.9		ns
t_{h}	Data hold time	CLKOUTP zero-crossing to data becoming invalid ${ }^{(6)}$	0.55	0.95		ns
$\mathrm{t}_{\text {PDI }}$	Clock propagation delay	Input clock falling edge crossover to output clock rising edge crossover 100 MSPS \leq sampling frequency ≤ 250 MSPS $t_{S}=1 /$ sampling frequency	$\mathrm{t}_{\text {PDI }}=0.69 \times \mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\text {delay }}$			
$\mathrm{t}_{\text {delay }}$			4.2	5.7	7.2	ns
	$\mathrm{t}_{\text {delay }}$ skew	Difference in $t_{\text {delay }}$ between two devices operating at same temperature and DRVDD supply voltage		± 500		ps
	LVDS bit clock duty cycle	Differential clock duty cycle (CLKOUTP - CLKOUTM) 100 MSPS \leq sampling frequency ≤ 250 MSPS		52\%		
$t_{\text {RISE, }}$ $t_{\text {FALL }}$	Data rise time, Data fall time	Rise time measured from -100 mV to +100 mV Fall time measured from +100 mV to -100 mV 1 MSPS \leq sampling frequency ≤ 250 MSPS		0.14		ns
$t_{\text {CLKRISE }}$, tclkFALL	Output clock rise time, Output clock fall time	Rise time measured from -100 mV to +100 mV Fall time measured from +100 mV to -100 mV 1 MSPS \leq sampling frequency ≤ 250 MSPS		0.14		ns
toe	Output buffer enable to data delay	Time to valid data after output buffer becomes active		100		ns

(1) Timing parameters are ensured by design and characterization and are not tested in production.
(2) CLOAD is the effective external single-ended load capacitance between each output pin and ground.
(3) $\mathrm{R}_{\text {LOAD }}$ is the differential load resistance between the LVDS output pair.
(4) At higher clock frequencies, $t_{\text {PDI }}$ is greater than one clock period and overall latency = ADC latency +1 .
(5) Measurements are done with a transmission line of $100-\Omega$ characteristic impedance between the device and load. Setup and hold time specifications take into account the effect of jitter on the output data and clock.
(6) Data valid refers to a logic high of +100.0 mV and a logic low of -100.0 mV .

Texas InSTRUMENTS

TIMING REQUIREMENTS: LVDS AND CMOS MODES ${ }^{(1)}$ (continued)

Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, sampling frequency $=250 \mathrm{MSPS}$, sine-wave input clock, $1.5-\mathrm{V}_{\mathrm{PP}}$ clock amplitude, $\mathrm{C}_{\mathrm{LOAD}}=5 \mathrm{pF}^{(2)}$, and $\mathrm{R}_{\text {LOAD }}=100 \Omega^{(3)}$, unless otherwise noted. Minimum and maximum values are across the full temperature range of $\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=+85^{\circ} \mathrm{C}$, $\mathrm{AVDD}=3.3 \mathrm{~V}$, and DRVDD $=1.7 \mathrm{~V}$ to 1.9 V .

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PARALLEL CMOS MODE ${ }^{(7)}$ (At $^{\text {f }}$ = $\mathbf{2 1 0}$ MSPS)						
$\mathrm{t}_{\text {Start }}$	Input clock to data delay	Input clock falling edge crossover to start of data valid ${ }^{(8)}$			2.5	ns
t_{DV}	Data valid time	Time interval of valid data ${ }^{(8)}$	1.7	2.7		ns
$\mathrm{t}_{\text {PDI }}$	Clock propagation delay	Input clock falling edge crossover to output clock rising edge crossover 100 MSPS \leq sampling frequency ≤ 150 MSPS $t_{S}=1 /$ sampling frequency	$\mathrm{t}_{\text {PDI }}=0.28 \times \mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\text {delay }}$			
$\mathrm{t}_{\text {delay }}$			5.5	7.0	8.5	ns
	Output clock duty cycle	Output clock duty cycle, CLKOUT 100 MSPS \leq sampling frequency ≤ 150 MSPS		43\%		
$t_{\text {RISE }}$, $t_{\text {FALL }}$	Data rise time, Data fall time	Rise time measured from 20% to 80% of DRVDD Fall time measured from 80% to 20% of DRVDD $1 \leq$ sampling frequency ≤ 210 MSPS		1.2		ns
tclkrise, tclkfall	Output clock rise time, Output clock fall time	Rise time measured from 20% to 80% of DRVDD Fall time measured from 80% to 20% of DRVDD $1 \leq$ sampling frequency ≤ 150 MSPS		0.8		ns
toe	Output buffer enable (OE) to data delay ${ }^{(9)}$	Time to valid data after output buffer becomes active		100		ns

(7) For $f_{S}>150$ MSPS, TI recommends using an external clock for data capture instead of the device output clock signal (CLKOUT).
(8) Data valid refers to a logic high of 1.26 V and a logic low of 0.54 V .
(9) The output buffer enable is controlled by serial interface register 40 h . The output buffer becomes active when serial control data for the output buffer are latched on the 16 th SCLK falling edge when SEN is low.

Table 2. LVDS Timings at Lower Sampling Frequencies

SAMPLING FREQUENCY (MSPS)	SETUP TIME (ns)			HOLD TIME (ns)			$\mathrm{t}_{\text {PDI }}(\mathrm{ns})$		
	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX
210	0.75	1.1		0.75	1.15		7.5	9	10.5
185	0.9	1.25		0.85	1.25		7.9	9.4	10.9
153	1.15	1.55		1.1	1.5		8.7	10.2	11.7
125	1.6	2		1.45	1.85		9.7	11.2	12.7
(enable low-speed mode for $\mathrm{f}_{\mathrm{S}} \leq 80$) ${ }^{(1)}$	2			2					
$1 \leq \mathrm{f}_{\mathrm{S}} \leq 80$ (enable low-speed mode for $\mathrm{f}_{\mathrm{S}} \leq 80$) ${ }^{(1)}$								12.6	

(1) Low-speed mode can only be enabled with the serial interface configuration.

Table 3. CMOS Timings at Lower Sampling Frequencies with Respect to Input Clock

SAMPLING FREQUENCY (MSPS)	TIMINGS SPECIFIED WITH RESPECT TO INPUT CLOCK				
	tstart $^{\text {(}} \mathrm{ns}$)		DATA VALID TIME (ns)		
	MIN	TYP MAX	MIN	TYP	MAX
210		2.5	1.7	2.7	
190		1.9	2	3	
170		0.9	2.7	3.7	
150		6	3.6	4.6	

Table 4. CMOS Timings at Lower Sampling Frequencies with Respect to CLKOUT

SAMPLING FREQUENCY (MSPS)	TIMINGS SPECIFIED WITH RESPECT TO CLKOUT								
	SETUP TIME (ns)			HOLD TIME (ns)			$t_{\text {PDI }}(\mathrm{ns})$		
	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX
170	2.1	3.7		0.35	1.0		7.1	8.6	10.1
150	2.8	4.4		0.5	1.2		7.4	8.9	10.4
125	3.8	5.4		0.8	1.5		7.7	9.2	10.7
<80 (enable low-speed mode for $\mathrm{f}_{\mathrm{S}} \leq 80$) ${ }^{(1)}$	5			1.2					
$1 \leq f_{S} \leq 80$ (enable low-speed mode for $f_{S} \leq 80$) ${ }^{(1)}$								9	

(1) Low-speed mode can only be enabled with the serial interface configuration.

PARAMETRIC MEASUREMENT INFORMATION

TIMING DIAGRAMS

Figure 1. Clock Amplitude Definition Diagram

(1) With external $100-\Omega$ termination

Figure 2. LVDS Output Voltage Levels

PARAMETRIC MEASUREMENT INFORMATION (continued)

Figure 3. Latency Diagram

Figure 4. LVDS Interface Timing

PARAMETRIC MEASUREMENT INFORMATION (continued)

(1) $\mathrm{Dn}=$ bits $\mathrm{DO}, \mathrm{D} 1, \mathrm{D} 2$, and so forth of channels A and B .

Figure 5. CMOS Interface Timing

PARAMETRIC MEASUREMENT INFORMATION (continued)
 SERIAL INTERFACE

Table 5. SERIAL INTERFACE TIMING CHARACTERISTICS ${ }^{(1)}$

	PARAMETER	MIN	TYP
$\mathrm{f}_{\text {SCLK }}$	SCLK frequency $\left(=1 / \mathrm{t}_{\text {SCLK }}\right)$	$>\mathrm{dc}$	MAX
$\mathrm{t}_{\text {SLOADS }}$	SEN to SCLK setup time	25	MHz
$\mathrm{t}_{\text {SLOADH }}$	SCLK to SEN hold time	25	ns
$\mathrm{t}_{\text {DS }}$	SDATA setup time	25	ns
t_{DH}	SDATA hold time	25	ns

(1) Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, minimum and maximum values are across the full temperature range of $\mathrm{T}_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=$ $+85^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}$, and DRVDD $=1.8 \mathrm{~V}$, unless otherwise noted.

Serial Register Readout

The device includes an option where the contents of the internal registers can be read back. This functionality may be useful as a diagnostic check to verify the serial interface communication between the external controller and the ADC. In order to achieve read back:

- First, set the SERIAL READOUT register bit to ' 1 '. This setting also disables any further writes into the registers.
- Initiate a serial interface cycle specifying the address of the register (A[7:0]) whose content must be read.
- The device outputs the contents ($\mathrm{D}[7: 0]$) of the selected register on the SDOUT pin (pin 64).
- The external controller can latch the contents at the SCLK falling edge.
- To enable register writes, reset the SERIAL READOUT register bit to '0'. SDOUT is a CMOS output pin; the readout functionality is available whether the ADC output data interface is LVDS or CMOS.
When SERIAL READOUT is disabled, the SDOUT pin is forced low by the device (and is not put in highimpedance). If serial readout is not used, the SDOUT pin must float. Note that contents of register 00h cannot be read back.

Table 6. Reset Timing (only when the serial interface is used) ${ }^{(1)}$

PARAMETER		CONDITIONS	MIN	TYP
t_{1}	Power-on delay	Delay from power-up of AVDD and DRVDD to RESET pulse active	1	UNIT
t_{2}	Reset pulse duration	Pulse duration of active RESET signal	10	ms
t_{3}	Register write delay	Delay from RESET disable to SEN active	$\mu \mathrm{ns}$	

(1) Typical values are at $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$, minimum and maximum values are across the full temperature range of $\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=$ $+85^{\circ} \mathrm{C}$, unless otherwise noted.
A) Enable serial readout (<SERIAL READOUT> = 1)

SDOUT Pin SDOUT is NOT in high-impedance state; it is forced low by the device (<SERIAL READOUT> = 0)
B) Read contents of register 0×40. This register has been initialized with $0 \times 0 \mathrm{C}$ (device is put in global power down mode)

Pin SDOUT functions as serial readout (<SERIAL READOUT> = 1)

Figure 6. Serial Readout

ADS62P19

NOTE: A high-going pulse on the RESET pin is required in serial interface mode in case of initialization through hardware reset. For parallel interface operation, RESET must be permanently tied high.

Figure 7. Reset Timing Diagram

PIN CONFIGURATIONS

Figure 8. LVDS Mode

PIN DESCRIPTIONS (LVDS MODE)

PIN		NO. OF PINS	I/O	
NAME	NO.	DESCRIPTION		
AGND	$17,18,21,24,27,28$, 31,32	8	I	Analog ground
AVDD	$16,33,34$	3	I	Analog power supply
CLKM	26	1	I	Differential clock input
CLKP	25	1	I	Differential clock input
CLKOUTM	56	1	O	Differential output clock, complement

PIN DESCRIPTIONS (LVDS MODE) (continued)

	PIN	NO. OF	I/O PINS	DESCRIPTION

Figure 9. CMOS Mode

PIN DESCRIPTIONS (CMOS MODE)

PIN		NO. OF PINS	I/O	DESCRIPTION
NAME	NO.			
AVDD	16, 33, 34	3	1	Analog power supply
AGND	$\begin{gathered} 17,18,21,24,27,28, \\ 31,32 \end{gathered}$	8	I	Analog ground
CLKM	26	1	1	Differential clock input
CLKP	25	1	I	Differential clock input
CLKOUT	57	1	0	CMOS output clock
CTRL1	35	1	I	Digital control input pins. Together, these pins control various power-down modes. Each pin has an internal 100-k Ω pull-down resistor.
CTRL2	36	1	1	
CTRL3	37	1	1	
DA0 to DA10	Refer to Figure 9	11	0	Channel A ADC output data bits, CMOS levels
DB0 to DB10	Refer to Figure 9	11	0	Channel B ADC output data bits, CMOS levels
DRGND	39, 49, 59, PAD	4	I	Output buffer ground
DRVDD	1, 38, 48, 58	4	1	Output buffer supply
INM_A	30	1	I	Differential analog input, channel A
INP_A	29	1	1	Differential analog input, channel A
INM_B	20	1	I	Differential analog input, channel B
INP_B	19	1	1	Differential analog input, channel B
NC	Refer to Figure 9	7		Do not connect
RESET	12	1	1	Serial interface RESET input. When using the serial interface mode, the internal registers must be initialized through a hardware RESET by applying a high-going pulse on this pin or by using a software reset option. Refer to the Serial Interface section. In parallel interface mode, the RESET pin must be permanently tied high. (SCLK and SEN are used as parallel control pins in this mode.) This pin has an internal $100-\mathrm{k} \Omega$ pull-down resistor.
SCLK	13	1	1	This pin functions as a serial interface clock input when RESET is low. SCLK controls the internal or external reference selection when RESET is tied high. See Table 8 for detailed information. This pin has an internal 100-k Ω pull-down resistor.
SDATA	14	1	1	Serial interface data input. This pin has an internal 100-k Ω pull-down resistor. SDATA has no function in parallel interface mode and can be tied to ground.
SDOUT	64	1	O	This pin functions as a serial interface register readout when the SERIAL READOUT bit is enabled. When SERIAL READOUT is ' 0 ', this pin forces a logic low and is not 3stated.
SEN	15	1	I	This pin functions as a serial interface enable input when RESET is low. SEN controls data format and interface type selection when RESET is tied high. See Table 9 for detailed information. This pin has an internal 100-k ${ }^{10}$ pull-up resistor to AVDD.
VCM	23	1	10	Internal reference mode. Common-mode voltage output. External reference mode. Reference input; the voltage forced on this pin sets the internal references.

FUNCTIONAL BLOCK DIAGRAM

Figure 10. Block Diagram

TYPICAL CHARACTERISTICS

All plots are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}$, $\mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine-wave input clock, $1.5-\mathrm{V}_{\mathrm{PP}}$ differential clock amplitude, 50% clock duty cycle, -1 -dBFS differential analog input, internal reference mode, $0-\mathrm{dB}$ gain, LVDS output interface, and 32K point FFT, unless otherwise noted.

Figure 11. FFT FOR $20-\mathrm{MHz}$ INPUT SIGNAL

Figure 13. FFT FOR $300-\mathrm{MHz}$ INPUT SIGNAL

Figure 12. FFT FOR 170-MHz INPUT SIGNAL

Figure 14. FFT FOR TWO-TONE INPUT SIGNAL

TYPICAL CHARACTERISTICS (continued)

All plots are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine-wave input clock, $1.5-V_{\text {PP }}$ differential clock amplitude, 50% clock duty cycle, $-1-\mathrm{dBFS}$ differential analog input, internal reference mode, $0-\mathrm{dB}$ gain, LVDS output interface, and 32 K point FFT, unless otherwise noted.

Figure 15. FFT FOR TWO-TONE INPUT SIGNAL

Figure 17. SNR vs INPUT FREQUENCY

Figure 16. SFDR vs INPUT FREQUENCY

Figure 18. SFDR vs INPUT FREQUENCY ACROSS GAIN

TYPICAL CHARACTERISTICS (continued)

All plots are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine-wave input clock, $1.5-V_{\text {PP }}$ differential clock amplitude, 50% clock duty cycle, $-1-\mathrm{dBFS}$ differential analog input, internal reference mode, $0-\mathrm{dB}$ gain, LVDS output interface, and 32 K point FFT, unless otherwise noted.

Figure 19. SINAD vs INPUT FREQUENCY ACROSS GAIN

Figure 21. PERFORMANCE vs COMMON-MODE INPUT VOLTAGE

Figure 20. PERFORMANCE vs INPUT AMPLITUDE (Single Tone)

Figure 22. SFDR vs AVDD SUPPLY VOLTAGE

TYPICAL CHARACTERISTICS (continued)

All plots are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine-wave input clock, $1.5-V_{\text {PP }}$ differential clock amplitude, 50% clock duty cycle, $-1-\mathrm{dBFS}$ differential analog input, internal reference mode, $0-\mathrm{dB}$ gain, LVDS output interface, and 32 K point FFT, unless otherwise noted.

Figure 23. SNR vs AVDD SUPPLY VOLTAGE

Figure 25. PERFORMANCE vs INPUT CLOCK AMPLITUDE

Figure 24. PERFORMANCE vs DRVDD SUPPLY VOLTAGE

Figure 26. PERFORMANCE vs INPUT CLOCK DUTY CYCLE

TYPICAL CHARACTERISTICS (continued)

All plots are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine-wave input clock, $1.5-V_{\text {PP }}$ differential clock amplitude, 50% clock duty cycle, $-1-\mathrm{dBFS}$ differential analog input, internal reference mode, $0-\mathrm{dB}$ gain, LVDS output interface, and 32 K point FFT, unless otherwise noted.

Figure 27. PERFORMANCE IN EXTERNAL REFERENCE MODE

Figure 29. CMRR vs FREQUENCY

Figure 28. CROSSTALK vs FREQUENCY

Figure 30. POWER DISSIPATION vs SAMPLING FREQUENCY

TYPICAL CHARACTERISTICS (continued)

All plots are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine-wave input clock, $1.5-V_{P P}$ differential clock amplitude, 50% clock duty cycle, $-1-\mathrm{dBFS}$ differential analog input, internal reference mode, $0-\mathrm{dB}$ gain, LVDS output interface, and 32 K point FFT, unless otherwise noted.

Figure 31. DRVDD CURRENT vs SAMPLING FREQUENCY

TYPICAL CHARACTERISTICS: Contour

All plots are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}$, $\mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine-wave input clock, $1.5-\mathrm{V}_{\mathrm{PP}}$ differential clock amplitude, 50% clock duty cycle, $-1-\mathrm{dBFS}$ differential analog input, internal reference mode, $0-\mathrm{dB}$ gain, LVDS output interface, and 32K point FFT, unless otherwise noted.

SFDR - dBc
Figure 32. SFDR CONTOUR
(0 -dB Gain, up to 500 MHz)

TYPICAL CHARACTERISTICS: Contour (continued)

All plots are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine-wave input clock, $1.5-V_{\text {PP }}$ differential clock amplitude, 50% clock duty cycle, $-1-\mathrm{dBFS}$ differential analog input, internal reference mode, $0-\mathrm{dB}$ gain, LVDS output interface, and 32 K point FFT, unless otherwise noted.

DEVICE CONFIGURATION

The ADS62P19 can be configured independently using either parallel interface control or serial interface programming.

PARALLEL CONFIGURATION ONLY

To put the device in parallel configuration mode, keep RESET tied high (AVDD or DRVDD).
With RESET high, the SEN, SCLK, CTRL1, CTRL2, and CTRL3 pins can be used to directly control certain modes of the ADC. The device can be easily configured by connecting the parallel pins to the correct voltage levels (as described in Table 7 to Table 10). There is no need to apply a reset and the SDATA pin can be connected to ground.
In this mode, SEN and SCLK function as parallel interface control pins. Frequently-used functions can be controlled in this mode (such as power-down modes, internal and external reference, selection between LVDS and CMOS interface, and output data format). Table 7 lists a brief description of the modes controlled by the four parallel pins.

Table 7. Parallel Pin Definition

PIN	TYPE OF PIN	CONTROLS MODES
SCLK	Analog control pins	
(controlled by analog voltage levels, see Figure 36)	Internal and external reference	
SEN	LVDS and CMOS interface and output data format CTRL1 (controlled by digital logic levels)	Controls power-down modes
CTRL2		
CTRL3		

Table 8. SCLK Control Pin
$\left.\begin{array}{|c|l|}\hline \text { VOLTAGE APPLIED ON SCLK } & \text { DESCRIPTION } \\ \hline 0 & \text { Internal reference } \\ \hline+200 \mathrm{mV} / 0 \mathrm{mV} & \text { External reference } \\ \hline(3 / 8) \mathrm{AVDD} \\ \pm 200 \mathrm{mV}\end{array}\right)$

Table 9. SEN Control Pin

VOLTAGE APPLIED ON SEN	DESCRIPTION
0 $+200 \mathrm{mV} / 0 \mathrm{mV}$	Twos complement, DDR LVDS output
$(3 / 8)$ AVDD $\pm 200 \mathrm{mV}$	Offset binary, DDR LVDS output
$(5 / 8) \mathrm{AVDD}$ $\pm 200 \mathrm{mV}$	Offset binary, parallel CMOS output
AVDD $0 \mathrm{mV} /-200 \mathrm{mV}$	Twos compliment, parallel CMOS output

Table 10. CTRL1, CTRL2, and CTRL3 Pins ${ }^{(1)}$

CTRL1	CTRL2	CTRL3	
Low	Low	Low	Normal operation
Low	Low	High	Not available
Low	High	Low	Not available
Low	High	High	Not available
High	Low	Low	Global power down
High	Low	High	Channel B standby
High	High	Low	Channel A standby
High	High	High	MUX mode of operation, Channel A and B data is multiplexed and output on DA10 to DAO pins. ${ }^{(2)}$

(1) See the POWER DOWN section in the Application Information.
(2) Low-speed mode must be enabled for the multiplexed output mode (MUX mode). Therefore, MUX mode only functions with the serial interface configuration and is not supported with the parallel configuration.

SERIAL INTERFACE CONFIGURATION ONLY

To exercise this mode, the serial registers must first be reset to the default values and the RESET pin must be kept low. SEN, SDATA, and SCLK function as serial interface pins in this mode and can be used to access the internal registers of the ADC. The registers can be reset either by applying a pulse on the RESET pin or by setting the RESET bit high. The Serial Interface section describes the register programming and reset in more detail.

DETAILS OF PARALLEL CONFIGURATION ONLY

The functions controlled by each parallel pin are described in this section. A simple way of configuring the parallel pins is shown in Figure 36.

Figure 36. Simple Scheme to Configure Parallel Pins

USING BOTH SERIAL INTERFACE AND PARALLEL CONTROLS

For increased flexibility, a combination of serial interface registers and parallel pin controls (CTRL1 to CTRL3) can also be used to configure the device. To allow this flexibility, keep RESET low. The parallel interface control pins (CTRL1 to CTRL3) are available. After power-up, the device is automatically configured as per the voltage settings on these pins (see Table 6). SEN, SDATA, and SCLK function as serial interface digital pins and are used to access the ADC internal registers. The registers must first be reset to the default values either by applying a pulse on the RESET pin or by setting the RST bit to ' 1 '. After reset, the RESET pin must be kept low. The Serial Interface section describes register programming and reset in more detail.

SERIAL INTERFACE

The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial interface enable), SCLK (serial interface clock), and SDATA (serial interface data) pins. Serially shift bits into the device is enabled when SEN is low. SDATA serial data are latched at every SCLK falling edge when SEN is active (low). The serial data are loaded into the register every 16th SCLK falling edge when SEN is low. In case the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data can be loaded in multiples of 16bit words within a single active SEN pulse.
The first eight bits form the register address and the remaining eight bits are the register data. The interface can function with SCLK frequencies from 20 MHz down to very low speeds (of a few hertz) and also with a non-50\% SCLK duty cycle.

Register Initialization

After power-up, the internal registers must be initialized to the default values. This initialization can be accomplished in one of two ways:

1. Either through a hardware reset by applying a high-going pulse on the RESET pin (of widths greater than $10 \mathrm{~ns})$, as shown in Figure 37,
or
2. By applying a software reset. Using the serial interface, set the RESET bit (bit D7 in register 00h) high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low. In this case, the RESET pin is kept low.

T0109-01
Figure 37. Serial Interface Timing

SERIAL REGISTER MAP

Table 11. Summary of Functions Supported by Serial Interface ${ }^{(1)}$

REGISTER ADDRESS	REGISTER FUNCTIONS							
A[7:0] (Hex)	D7	D6	D5	D4	D3	D2	D1	D0
00	RESET	0	0	0	0	0	0	SERIAL READOUT
20	0	0	0	0	0	ENABLE LOW SPEED MODE	0	0
3F	0	REF	0	0	0	0	STANDBY	0
40	0	0	0	0	POWER DOWN MODES			
41	LVDS CMOS	0	0	0	0	0	0	0
44	CLKOUT EDGE CONTROL						0	0
50	0	ENABLE INDIVIDUAL CHANNEL CONTROL	0	0	0	DATA FORMAT		0
51	CUSTOM PATTERN LOW					0	0	0
52	0	0	CUSTOM PATTERN HIGH					
53	0	ENABLE OFFSET CORRECTION, CH A	0	0	0	0	0	0
55	GAIN PROGRAMMABILITY, CH A				OFFSET CORRECTION TIME CONSTANT, CH A			
57	0	FINE GAIN ADJUST, CH A						
62	0	0	0	0	0	TEST PATTERNS, CH A		
63	0	0	OFFSET PEDESTAL, CH A			0	0	0
66	0	ENABLE OFFSET CORRECTION, CH B	0	0	0	0	0	0
68	GAIN PROGRAMMABILITY, CH B				OFFSET CORRECTION TIME CONSTANT, CH B			
6A	0	FINE GAIN ADJUST, CH B						
75	0	0	0	0	0	TEST PATTERNS, CH B		
76	0	0	OFFSET PEDESTAL, CH B			0	0	0

(1) Multiple functions in a register can be programmed in a single write operation.

DESCRIPTION OF SERIAL REGISTERS

Table 12. Register 00h

D7	D6	D5	D4	D3	D2	D1	D0
RESET	0	0	0	0	0	0	SERIAL READOUT

Bit D7	RESET: Software reset
	1 = Software reset applied; resets all internal registers and self-clears to ' 0 '.
Bits D[6:1]	Always write ' 0 '
Bit D0	SERIAL READOUT
	$0=$ Serial readout disabled. SDOUT is forced low by the device (and not put in high-impedance state). 1
	$=$ Serial readout enabled. SDOUT functions as a serial data readout.

Table 13. Register 20h

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	ENABLE LOW-SPEED MODE	0	0

Bits D[7:3]	Always write '0'
Bit D2	ENABLE LOW-SPEED MODE
	$0=$ Low-speed mode disabled; use for sampling frequencies >80 MSPS
	$1=$ Enable low-speed mode for sampling frequencies ≤ 80 MSPS

Bits $\mathrm{D}[1: 0] \quad$ Always write '0'
Table 14. Register 3Fh

D7	D6	D5	D4	D3	D2	D1	D0
0	REF	0	0	0	STANDBY	0	

Bit D7	Always write '0'
Bits D[6:5]	REF: Internal or external reference selection
	$00=$ Internal reference enabled
	01 = Do not use
	10 = Do not use
	11 = External reference enabled
Bits D[4:2]	Always write '0'
Bit D1	STANDBY
	$0=$ Normal operation
	$1=$ Both ADC channels are put in standby. Internal references and output buffers are active. This architecture results in a quick wake-up time from standby.

Bit D0
Always write ' 0 '

Table 15. Register 40h

D7	D6	D5	D4	D3	D2	D1
0	0	0	0		POWER DOWN MODES	

Bits D [3:0] POWER DOWN MODES
0000 = The CTRL1, CTRL2, and CTRL3 pins determine the power-down modes.
1000 = Normal operation
1001 = Output buffer disabled for channel B
1010 = Output buffer disabled for channel A
1011 = Output buffer disabled for channel A and B
1100 = Global power-down
1101 = Channel B standby
1110 = Channel A standby
1111 = Multiplexed mode (MUX), only with CMOS interface.
Channel A and B data are multiplexed and output on the DA10 to DAO pins. Refer to the Multiplexed Output Mode section in the Application Information for additional information.

Table 16. Register 41h

D7	D6	D5	D4	D3	D2	D1	D0
LVDS CMOS	0	0	0	0	0	0	0

Bit D7
LVDS CMOS: Output interface
0 = Parallel CMOS interface
1 = DDR LVDS interface
Bits D[6:0]
Always write ' 0 '

Table 17. Register 44h

D7	D6	D5	D4	D3	D2	D1
CLKOUT EDGE CONTROL						

Bits D [7:2] CLKOUT EDGE CONTROL: Output clock edge control

These bits control the output clock edge. The output clock rising and falling edge position settings are different for the LVDS and CMOS interfaces.

LVDS INTERFACE

Bits D[7:5]	CLKOUT POSN: Output clock rising edge position ${ }^{(1)}$
	$000=$ Default output clock position (refer to the Timing Requirements table)
	$100=$ Default output clock position (refer to the Timing Requirements table)
	101 = Falling edge shifted (delayed) by $+(4 / 26) \times \mathrm{t}_{\mathrm{S}}{ }^{(2)}$
	$110=$ Falling edge shifted (advanced) by $-(7 / 26) \times t_{\text {s }}$
	111 = Falling edge shifted (advanced) by $-(4 / 26) \times$ ts
Bits D[4:2]	CLKOUT POSN: Output clock falling edge position ${ }^{(1)}$
	$000=$ Default output clock position (refer to the Timing Requirements table)
	$100=$ Default output clock position (refer to the Timing Requirements table)
	$101=$ Rising edge shifted (delayed) by $+(4 / 26) \times t_{\text {s }}$
	$110=$ Rising edge shifted (advanced) by $-(7 / 26) \times \mathrm{t}_{\text {s }}$
	$111=$ Rising edge shifted (advanced) by $-(4 / 26) \times \mathrm{t}_{\text {s }}$
CMOS INTERFACE	
Bits D[7:5]	CLKOUT POSN: Output clock rising edge position ${ }^{(1)}$
	$000=$ Default output clock position (refer to the Timing Requirements table)
	$100=$ Default output clock position (refer to the Timing Requirements table)
	$101=$ Rising edge shifted (delayed) by $+(4 / 26) \times t_{s}$
	$110=$ Rising edge shifted (advanced) by $-(7 / 26) \times$ ts
	111 = Rising edge shifted (advanced) by $-(4 / 26) \times t_{s}$
Bits D[4:2]	CLKOUT POSN: Output clock falling edge position ${ }^{(1)}$
	$000=$ Default output clock position (refer to the Timing Requirements table)
	$100=$ Default output clock position (refer to the Timing Requirements table)
	101 = Falling edge shifted (delayed) by $+(4 / 26) \times t_{\text {s }}$
	$110=$ Falling edge shifted (advanced) by $-(7 / 26) \times$ ts
	111 = Falling edge shifted (advanced) by $-(4 / 26) \times$ ts

Bits $\mathrm{D}[1: 0] \quad$ Always write ' 0 '. These bit settings are the same for both LVDS and CMOS interfaces.
(1) Keep the same duty cycle, move both edges by the same amount (for instance, write both $\mathrm{D}[4: 2]$ and $\mathrm{D}[7: 5]$ to be the same value).
(2) $t_{S}=1 /$ sampling frequency.

(1) Keep the same duty cycle, move both edges by same amount (for instance, write both $D[4: 2]$ and $D[7: 5]$ to be the same value).
(2) Refer to the Timing Requirements table for default output clock position.

Figure 38. LVDS Interface Output Clock Edge Movement (Serial Register 0x44)

T0491-01
(1) Keep the same duty cycle, move both edges by same amount (for instance, write both $\mathrm{D}[4: 2]$ and $\mathrm{D}[7: 5]$ to be the same value).
(2) Refer to the Timing Requirements table for default output clock position.

Figure 39. CMOS Interface Output Clock Edge Movement (Serial Register 44h)

Table 18. Register 50h

D7	D6	D5	D4	D3	D2	D1
0	ENABLE INDIVIDUAL CHANNEL CONTROL	0	0	0	D0	

Bit D7	Always write '0'
Bit D6	ENABLE INDIVIDUAL CHANNEL CONTROL

$0=$ Common control: both channels use common control settings for test patterns, offset correction, fine gain, and gain correction. These settings can be specified in a single set of registers.
1 = Independent control: both channels can be programmed with independent control settings for test patterns, and offset correction. Separate registers are available for each channel.
Bits D [2:1] DATA FORMAT: Twos complement or offset binary
$10=$ Twos complement
11 = Offset binary
Bit D0 Always write '0'
Table 19. Register 51h

D7	D6	D5	D4	D3	D2	D1	D0
CUSTOM PATTERN LOW							0
0	0	0					

Bits D [7:3] CUSTOM PATTERN LOW

Five lower custom pattern bits are available at the output instead of ADC data.
Bits D [2:0] Always write '0'
Table 20. Register 52h

D7	D6	D5	D4	D3	D2	D1	D0
0	0	CUSTOM PATTERN HIGH					

Bits $D[7: 6]$	Always write '0'
Bits $D[5: 0]$	CUSTOM PATTERN HIGH

Six upper custom pattern bits are available at the output instead of ADC data.
Use this mode with the TEST PATTERNS register bits (register 62h).
Table 21. Register 53h

D7	D6	D5	D4	D3	D2	D1	D0
0	ENABLE OFFSET CORRECTION, CH A	0	0	0	0	0	0

Bit D7	Always write ' 0 '
Bit D6	ENABLE OFFSET CORRECTION: Common, channel A, offset correction enable
	Offset correction enable control for both channels (with common control) or for channel A only (with independent control). $0=$ Offset correction disabled $1=$ Offset correction enabled
Bits $D[5: 0]$	Always write ' 0 '

Table 22. Register 55h

D7	D6	D5	D4	D3	D2	D1
GAIN PROGRAMMABILITY, CH A			OFFSET CORRECTION TIME CONSTANT, CH A			

Bits $\mathrm{D}[7: 4] \quad$ GAIN PROGRAMMABILITY, CH A: Common, channel A
Gain control for both channels (with common control) or for channel A only (with independent control).
$0000=0-\mathrm{dB}$ gain (default after reset)
$0001=0.5-\mathrm{dB}$ gain
$0010=1.0-\mathrm{dB}$ gain
$0011=1.5-\mathrm{dB}$ gain
$0100=2.0-\mathrm{dB}$ gain
$0101=2.5-\mathrm{dB}$ gain
$0110=3.0-\mathrm{dB}$ gain
$0111=3.5-\mathrm{dB}$ gain
$1000=4.0-\mathrm{dB}$ gain
$1001=4.5-\mathrm{dB}$ gain
$1010=5.0-\mathrm{dB}$ gain
1011 = 5.5-dB gain
$1100=6.0-\mathrm{dB}$ gain
Bits D[3:0] OFFSET CORRECTION TIME CONSTANT, CH A: Common, channel A, offset correction time constant
Correction loop time constant in number of clock cycles.
Applies to both channels (with common control) or for channel A only (with independent control).
$0000=256 \mathrm{k}$
$0001=512 k$
$0010=1 \mathrm{M}$
$0011=2 \mathrm{M}$
$0100=4 \mathrm{M}$
$0101=8 \mathrm{M}$
$0110=16 \mathrm{M}$
$0111=32 \mathrm{M}$
$1000=64 \mathrm{M}$
$1001=128 \mathrm{M}$
$1010=256 M$
$1011=512 \mathrm{M}$
Table 23. Register 57h

D7	D6	D5	D4	D3	D2	D1	D0
0	FINE GAIN ADJUST, CH A						

Bit D7

Bits D[6:0]

Always write ' 0 '

FINE GAIN ADJUST, CH A: Common, channel A (+0.001 dB to +0.134 dB, in 128 steps)
Using the FINE GAIN ADJUST register bits, the channel gain can be trimmed in fine steps. The trim is only additive, and has 128 steps and a range of 0.134 dB . The relationship between the FINE GAIN ADJUST bits and the trimmed channel gain is:
Δ channel gain $=20 \times \log 10[1+($ FINE GAIN ADJUST $/ 1024)]$
Note that the total device gain $=$ ADC gain $+\Delta$ channel gain. ADC gain is determined by the GAIN PROGRAMMABILITY register bits.

Table 24. Register 62h

D7	D6	D5	D4	D3	D2	D1
0	0	0	0	0	D0	

Bits D[2:0]

TEST PATTERNS, CH A: Test Patterns to verify data capture

Applies to both channels (with common control) or for channel A only with independent control. Note that in LVDS mode, the test pattens come out as 12-bit data with the LSB (the dummy bit) coming out at the output clock rising edge. The analog path, however, gives out only 11 -bit data where the dummy bit is always ' 0 '. While capturing, the dummy bit can always be ignored and the remaining 11 bits should be processed.
$000=$ Normal operation
$001=$ Outputs all 0s
$010=$ Outputs all 1 s
011 = Outputs toggle pattern; see Figure 40 and Figure 41 for LVDS and CMOS mode test pattern timing diagrams. Output data D[10:0] alternates between 01010101010 and 10101010101 every clock cycle.
100 = Outputs digital ramp
Output data increments by one LSB (11-bit) every eighth clock cycle from code 0 to code 2047.
$101=$ Outputs custom pattern (use registers 51 h and 52 h for setting the custom pattern); see Figure 43 for an example of a custom pattern.

$$
\begin{aligned}
& 110=\text { Unused } \\
& 111=\text { Unused }
\end{aligned}
$$

(1) This bit is the dummy bit.

NOTE: Even bits output at the CLKOUTP rising edge and odd bits output at the CLKOUTP falling edge.
NOTE: Output toggles at half the sampling rate ($\mathrm{f}_{\mathrm{S}} / 2$) in this test mode.
Figure 40. Output Toggle Pattern (Serial Register 62h, $\mathrm{D}[2: 0]=011$) in LVDS Mode

NOTE: Output toggles at half the sampling rate ($\mathrm{f}_{\mathrm{S}} / 2$) in this test mode.
Figure 41. Output Toggle Pattern (Serial Register 62h, D[2:0] = 011) in CMOS Mode

Figure 42. Example: Register $51 \mathrm{~h}=\mathrm{A} 1 \mathrm{~h}$ and Register $52 \mathrm{~h}=2 \mathrm{Ah}$ to Toggle Output at f_{S}

(1) This bit is the dummy bit.

NOTE: Even bits output at the CLKOUTP rising edge, and odd bits output at the CLKOUTP falling edge.
NOTE: Output toggles at the sampling rate (f_{S}) in this test mode.
Figure 43. Output Custom Pattern (Serial Register 62h, D[2:0] = 101) in LVDS Mode

Table 25. Register 63h

D7	D6	D5	D4	D3	D2	D1	D0
0	0	OFFSET PEDESTAL, CH A	0	0	0		

Bits D[7:6]	Always write '0'
Bits D[5:3]	OFFSET PEDESTAL, CH A: Common, channel A
	When the offset correction is enabled, the final converged value (after the offset is corrected) is the ideal ADC midcode value of 1024. A pedestal can be added to the final converged value by programming these bits. Thus, the final converged value is = ideal mid-code + PEDESTAL. See the Offset Correction section in the Application Information.
	Applies to both channels (with common control) or for channel A only (with independent control).
	011 = PEDESTAL is 3 LSB
	010 = PEDESTAL is 2 LSB
	001 = PEDESTAL is 1 LSB
	000 = PEDESTAL is 0 LSB
	$111=$ PEDESTAL is -1 LSB
	$110=$ PEDESTAL is -2 LSB
	$101=$ PEDESTAL is -3 LSB
	$100=$ PEDESTAL is -4 LSB
Bits D[2:0]	Always write '0'

Table 26. Register 66h

D7	D6	D5	D4	D3	D2	D1	D0
0	ENABLE OFFSET CORRECTION, CH B	0	0	0	0	0	0

Bit D7	Always write '0'
Bit D6	ENABLE OFFSET CORREC
	Offset correction enable contr
	$0=$ Offset correction disabled
	$1=$ Offset correction enabled

Bits $\mathrm{D}[5: 0] \quad$ Always write ' 0 '
Table 27. Register 68h

D7	D6	D5	D4	D3	D2	D1
GAIN PROGRAMMABILITY, CH B			OFFSET CORRECTION TIME CONSTANT, CH B			

Bits D[7:4]

Bits $\mathrm{D}[3: 0] \quad$ OFFSET CORRECTION TIME CONSTANT, CH B: Correction loop time constant in number of clock cycles.
Applies to channel B (only with independent control)
$0000=256 \mathrm{k}$
$0001=512 \mathrm{k}$
$0010=1 \mathrm{M}$
$0011=2 \mathrm{M}$
$0100=4 \mathrm{M}$
$0101=8 \mathrm{M}$
$0110=16 \mathrm{M}$
$0111=32 \mathrm{M}$
$1000=64 M$
$1001=128 \mathrm{M}$
$1010=256 \mathrm{M}$
$1011=512 \mathrm{M}$

Table 28. Register 6Ah

D7	D6	D5	D4	D3	D2	D1	D0

Bits $\mathrm{D}[7: 0] \quad$ FINE GAIN ADJUST, CH B: $\mathbf{+ 0 . 0 0 1} \mathbf{d B}$ to $\mathbf{+ 0 . 1 3 4 ~ d B , ~ i n ~} 128$ steps
Using the FINE GAIN ADJUST register bits, the channel gain can be trimmed in fine steps. The trim is only additive, and has 128 steps and a range of 0.134 dB . The relationship between the FINE GAIN ADJUST bits and the trimmed channel gain is:
Δ channel gain $=20 \times \log 10[1+($ FINE GAIN ADJUST $/ 1024)]$
Note that the total device gain = ADC gain $+\Delta$ channel gain. The ADC gain is determined by the GAIN PROGRAMMABILITY register bits.

Table 29. Register 75h

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	TEST PATTERNS, CH B		

Bits D[7:3]

Bits D[2:0]

Always write ' 0 '

TEST PATTERNS, CH B: Test patterns to verify data capture

Applies to channel B only with independent control. Note that in LVDS mode, the test pattens come out as 12 -bit data with the LSB (the dummy bit) coming out at the output clock rising edge. The analog path, however, gives out only 11-bit data where the dummy bit is always ' 0 '. While capturing, the dummy bit can always be ignored and the remaining 11 bits should be processed.
$000=$ Normal operation
001 = Outputs all 0s
010 = Outputs all 1s
011 = Outputs toggle pattern; see Figure 40 and Figure 41 for LVDS and CMOS modes.
Output data D[10:0] alternates between 01010101010 and 10101010101 every clock cycle.
$100=$ Outputs digital ramp
Output data increments by one LSB (11-bit) every eighth clock cycle from code 0 to code 2047.
101 = Outputs custom pattern (use registers 51 and 52 for setting the custom pattern); see Figure 43 for an example of a custom pattern.
110 = Unused
111 = Unused

Table 30. Register 76h

D7	D6	D5	D4	D3	D2	D1	D0
0	0	OFFSET PEDESTAL, CH B	0	0	0		

Bits D[7:6]	Always write '0'
Bits D[5:3]	OFFSET PEDESTAL, CH B: Common, channel B
	When the offset correction is enabled, the final converged value (after the offset is corrected) is the ideal ADC midcode value of 1024. A pedestal can be added to the final converged value by programming these bits. Thus, the final converged value is = ideal mid-code + PEDESTAL. See the Offset Correction section in the Application Information.
	Applies to channel B (only with independent control).
	011 = PEDESTAL is 3 LSB
	010 = PEDESTAL is 2 LSB
	001 = PEDESTAL is 1 LSB
	$000=$ PEDESTAL is 0 LSB
	$111=\mathrm{PEDESTAL}$ is -1 LSB
	$110=$ PEDESTAL is -2 LSB
	$101=\mathrm{PEDESTAL}$ is -3 LSB
	100 = PEDESTAL is -4 LSB
Bits D[2:0]	Always write '0'

APPLICATION INFORMATION

THEORY OF OPERATION

The ADS62P19 is a high-performance, low-power, dual-channel, 11-bit analog-to-digital converter (ADC) with sampling rates up to 250 MSPS. At every input clock falling edge, the analog input signal of each channel is sampled simultaneously. The sampled signal in each channel is converted by a pipeline of low-resolution stages. In each stage, the sampled and held signal is converted by a high-speed, low-resolution, flash sub-ADC. The difference (residue) between the stage input and the quantized equivalent is gained and propagates to the next stage.
At every clock, each succeeding stage resolves the sampled input with greater accuracy. The digital outputs from all stages are combined in a digital correction logic block and are processed digitally to create the final code, after a data latency of 22 clock cycles. The digital output is available as either DDR LVDS or parallel CMOS and is coded in either straight offset binary or binary twos complement format. The dynamic offset of the first stage sub-ADC limits the maximum analog input frequency to approximately 500 MHz (with $2-\mathrm{V}_{\mathrm{PP}}$ amplitude) and approximately 800 MHz (with $1-\mathrm{V}_{\mathrm{PP}}$ amplitude).

ANALOG INPUT

The analog input consists of a switched-capacitor-based differential sample-and-hold architecture, as shown in Figure 44. This differential topology results in very good ac performance, even for high input frequencies at high sampling rates. The INP and INM pins must be externally biased around a common-mode voltage of 1.5 V , available on the VCM pin. For a full-scale differential input, each input pin (INP, INM) must swing symmetrically between VCM +0.5 V and $\mathrm{VCM}-0.5 \mathrm{~V}$, resulting in a $2-\mathrm{V}_{\mathrm{PP}}$ differential input swing. The input sampling circuit has a high $3-\mathrm{dB}$ bandwidth that extends up to 700 MHz (measured from the input pins to the sampled voltage).

Figure 44. Analog Input Circuit

Drive Circuit Requirements

For optimum performance, the analog inputs must be driven differentially. This configuration improves the common-mode noise immunity and even-order harmonic rejection. A $5-\Omega$ to $15-\Omega$ resistor in series with each input pin is recommended to damp out ringing caused by package parasitic.

SFDR performance can be limited because of several reasons: the effect of sampling glitches (as described in this section), nonlinearity of the sampling circuit, and nonlinearity of the quantizer that follows the sampling circuit. Depending on the input frequency, sample rate, and input amplitude, one of these restrictions plays a dominant part in limiting performance.

At very high input frequencies (greater than approximately 300 MHz), SFDR is determined largely by the device sampling circuit nonlinearity. At low input amplitudes, the quantizer nonlinearity usually limits performance.
Glitches are caused by the opening and closing of the sampling switches. The driving circuit should present a low source impedance to absorb these glitches. Otherwise, these glitches might limit performance, mainly at low input frequencies (up to approximately 200 MHz). Low impedance (less than 50Ω) must also be presented for the common-mode switching currents. This impedance can be achieved by using two resistors from each input terminated to the common-mode voltage (VCM).

The device includes an internal R-C filter from each input to ground. The purpose of this filter is to absorb the sampling glitches inside the device itself. The cutoff frequency of the R-C filter involves a trade-off. A lower cutoff frequency (larger C) absorbs glitches better, but reduces the input bandwidth. On the other hand, with a higher cutoff frequency (smaller C), bandwidth support is maximized. However, the sampling glitches must be supplied by the external drive circuit. This configuration has limitations because of the presence of the package bond-wire inductance.
In the ADS62P19, the R-C component values have been optimized while supporting high input bandwidth (up to 700 MHz). However, in applications with input frequencies up to 200 MHZ to 300 MHz , the filtering of the glitches can be improved further using an external R-C-R filter (see Figure 47 and Figure 48).

In addition, the drive circuit may have to be designed to provide a low insertion loss over the desired frequency range and matched impedance to the source. During this process, ADC input impedance must be considered. Figure 45 and Figure 46 show the impedance $\left(Z_{\text {IN }}=R_{\text {IN }} \| C_{\text {IN }}\right)$ at the ADC input pins.

Figure 45. ADC Analog Input Resistance (R_{IN}) Across Frequency

Figure 46. ADC Analog Input Capacitance ($\mathrm{C}_{\mathbb{1}}$) Across Frequency

Driving Circuit

Two example driving circuit configurations are shown in Figure 47 and Figure 48, one optimized for low bandwidth (low input frequencies) and the other one for high bandwidth to support higher input frequencies. In Figure 47, an external R-C-R filter using 22 pF is used. Together with the series inductor (39 nH), this combination forms a filter and absorbs the sampling glitches. Because of the large capacitor (22 pF) in the R-C-R and the $15-\Omega$ resistors in series with each input pin, the drive circuit has low bandwidth and supports low input frequencies (< 100 MHz).

To support higher input frequencies (up to approximately 300 MHz , as shown in Figure 48), the capacitance used in the R-C-R is reduced to 3.3 pF and the series inductors are shorted out. Together with the lower series resistors (5Ω), this drive circuit provides high bandwidth and supports high input frequencies. Transformers such as ADT1-1WT or ETC1-1-13 can be used up to 300 MHz .

Figure 47. Drive Circuit With Low Bandwidth (for Low Input Frequencies)

Figure 48. Drive Circuit With High Bandwidth (for High Input Frequencies)

Without the external R-C-R filter, the drive circuit has very high bandwidth and can support very high input frequencies (> 300 MHz). For example, a transmission line transformer such as ADTL2-18 can be used, as shown in Figure 49. Note that both drive circuits are terminated by 50Ω near the ADC side. The termination is accomplished by a $25-\Omega$ resistor from each input to the $1.5-\mathrm{V}$ common-mode (VCM) from the device. This configuration allows the analog inputs to be biased around the required common-mode voltage.
The mismatch in the transformer parasitic capacitance (between the windings) results in degraded even-order harmonic performance. Connecting two identical RF transformers back-to-back helps minimize this mismatch and good performance is obtained for high-frequency input signals. An additional termination resistor pair may be required between the two transformers, as described in Figure 47, Figure 48, and Figure 49. The center point of this termination is connected to ground to improve the balance between the P and M side. The values of the terminations between the transformers and on the secondary side must be chosen to obtain an effective 50Ω (in the case of a $50-\Omega$ source impedance).

Figure 49. Drive Circuit with Very High Bandwidth (> $\mathbf{3 0 0} \mathbf{~ M H z) ~}$
These examples show $1: 1$ transformers used with a $50-\Omega$ source. As explained in the Drive Circuit Requirements section, this structure helps present a low source impedance to absorb the sampling glitches. With a 1:4 transformer, the source impedance is 200Ω. The higher impedance can lead to degradation in performance, compared to the case with 1:1 transformers.
For applications where only a band of frequencies are used, the drive circuit can be tuned to present a low impedance for the sampling glitches. Figure 50 shows an example with 1:4 transformer, tuned for a band at approximately 150 MHz .

Figure 50. Drive Circuit with a 1:4 Transformer

Input Common-Mode

To ensure a low-noise common-mode reference, the VCM pin is filtered with a $0.1-\mu \mathrm{F}$ low-inductance capacitor connected to ground. The VCM pin is designed to directly drive the ADC inputs. The ADC input stage sinks a common-mode current in the order of $3.6 \mu \mathrm{~A}$ per MSPS (approximately $900 \mu \mathrm{~A}$ at 250 MSPS).

REFERENCE

The ADS62P19 has built-in internal references (REFP and REFM) that require no external components. Design schemes are used to linearize the converter load detected by the references; this functionality and the on-chip integration of the requisite reference capacitors eliminates the need for external decoupling. The full-scale input range of the converter can be controlled in the external reference mode as explained in Figure 51. The internal or external reference modes can be selected by programming the REF serial interface register bit.

S0165-09
Figure 51. Reference Section

Internal Reference

When the device is in internal reference mode, the REFP and REFM voltages are generated internally. The common-mode voltage (1.5 V , nominal) is output on the VCM pin, which can be used to externally bias the analog input pins.

External Reference

When the device is in external reference mode, the VCM functions as a reference input pin. The voltage forced on the VCM pin is buffered and gained by 1.33 internally, generating the REFP and REFM voltages. The differential input voltage corresponding to full-scale is given by the following:

Full-scale differential input peak-to-peak $=($ voltage forced on VCM $) \times 1.33$
In this mode, the $1.5-\mathrm{V}$ common-mode voltage to bias the input pins must be generated externally.

CLOCK INPUT

The ADS62P19 clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS), with little or no difference in performance between them. The common-mode voltage of the clock inputs is set to VCM using internal $5-\mathrm{k} \Omega$ resistors, as shown in Figure 52. This configuration allows using transformer-coupled drive circuits for sine-wave clock or ac-coupling for LVPECL and LVDS clock sources (Figure 53, Figure 54, and Figure 55).
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM (pin 11) connected to ground with a $0.1-\mu \mathrm{F}$ capacitor; see Figure 56. For best performance, the clock inputs must be driven differentially, thus reducing susceptibility to common-mode noise. For high input frequency sampling, TI recommends using a clock source with very low jitter. Bandpass filtering of the clock source can help reduce the effect of jitter. There is no change in performance with a non-50\% duty cycle clock input.

Figure 52. Internal Clock Buffer

Figure 53. Differential Sine-Wave Clock Driving Circuit

Figure 55. Typical LVPECL Clock Driving Circuit

Figure 54. Typical LVDS Clock Driving Circuit

Figure 56. Typical LVCMOS Clock Driving Circuit

GAIN PROGRAMMABILITY

The ADS62P19 includes gain settings that can be used to obtain improved SFDR performance (compared to no gain). Gain is programmable from 0 dB to 6 dB (in $0.5-\mathrm{dB}$ steps). For each gain setting, the analog input fullscale range scales proportionally, as shown in Table 31. SFDR improvement is achieved th the expense of SNR; for each $1-\mathrm{dB}$ gain step, SNR degrades by approximately 1 dB . SNR degradation is reduced at high input frequencies. As a result, gain is very useful at high input frequencies because SFDR improvement is significant with marginal degradation in SNR. Therefore, gain can be used to trade-off between SFDR and SNR. Note that the default gain after reset is 0 dB .

Table 31. Full-Scale Range Across Gains

GAIN (dB)	DESCRIPTION	FULL-SCALE (V $\mathbf{V P P}^{\prime}$)
0	Default after reset	2
1	Fine, programmable	1.78
2	Fine, programmable	1.59
3	Fine, programmable	1.42
4	Fine, programmable	1.26
5	Fine, programmable	1.12
6	Fine, programmable	1.00

OFFSET CORRECTION

The ADS62P19 has an internal offset correction algorithm that estimates and corrects dc offset up to $\pm 10 \mathrm{mV}$. The correction can be enabled with the ENABLE OFFSET CORRECTION serial register bit. When enabled, the algorithm estimates the channel offset and applies the correction every clock cycle. The correction loop time constant is a function of the sampling clock frequency. The time constant can be controlled using the OFFSET CORR TIME CONSTANT register bits, as described in Table 32.
After the offset is estimated, the correction can be frozen by setting ENABLE OFFSET CORRECTION back to ' 0 '. When frozen, the last estimated value is used for offset correction every clock cycle. The correction does not affect the phase of the signal. Note that offset correction is disabled by default after reset.

Table 32. Time Constant of Offset Correction Algorithm

OFFSET CORR TIME CONSTANT $(\mathrm{D}[3: 0])$	TIME CONSTANT (TC ${ }_{\text {CLK }}$, NUMBER OF CLOCK CYCLES)	TIME CONSTANT (Seconds, Equal to $\mathrm{TC}_{\mathrm{CLK}} \times 1 / \mathrm{f}_{\mathrm{S}}{ }^{(1)}$
0000	256 k	1 ms
0001	512 k	2 ms
0010	1 M	4 ms
0011	2 M	8 ms
0100	4 M	17 ms
0101	8 M	33 ms
0110	16 M	67 ms
0111	32 M	134 ms
1000	64 M	268 ms
1001	128 M	536 ms
1010	256 M	1.1 s
1011	512 M	2.2 s
1100	Reserved	-
1101	Reserved	-
1110	Reserved	-
1111	Reserved	-

(1) Sampling frequency, $\mathrm{f}_{\mathrm{S}}=250 \mathrm{MSPS}$.

POWER DOWN

The ADS62P19 has two power-down modes: global power down and individual channel standby. These modes can be set using either the serial register bits or the control pins (CTRL1 to CTRL3). Table 33 describes the power-down modes.

Table 33. Need Title

POWER-DOWN MODES	CONFIGURE WITH				WAKE-UP TIME
	SERIAL INTERFACE	PARALLEL CONTROL PINS			
Normal operation	POWER DOWN MODES $=0000$	Low	Low	Low	-
Output buffer disabled for channel B	POWER DOWN MODES $=1001$	Not Available			-
Output buffer disabled for channel A	POWER DOWN MODES $=1010$	Not Available			-
Output buffer disabled for channel A and B	POWER DOWN MODES $=1011$	Not Available			-
Global power-down	POWER DOWN MODES $=1100$	High	Low	Low	Slow ($30 \mu \mathrm{~s}$)
Channel B standby	POWER DOWN MODES = 1101	High	Low	High	Fast (1 $\mu \mathrm{s}$)
Channel A standby	POWER DOWN MODES = 1110	High	High	Low	Fast (1 $\mu \mathrm{s}$)
Multiplexed (MUX) mode; output data of channel A and B are multiplexed and available on the DA[10:0] pins. ${ }^{(1)}$	POWER DOWN MODES = 1111	High	High	High	-

(1) Low-speed mode must be enabled for the multiplexed output mode (MUX mode). Therefore, MUX mode only functions with the serial interface configuration and is not supported with the parallel configuration.

Global Power Down

In this mode, the entire chip (including both ADCs, internal reference, and output buffers) is powered down, resulting in a reduced total power dissipation of approximately 45 mW . The output buffers are in high-impedance state. The wake-up time from the global power-down to data becoming valid in normal mode is typically $30 \mu \mathrm{~s}$.

Channel Standby

In this mode, the ADC for each channel can be powered down. The internal references are active, resulting in a quick wake-up time of $1 \mu \mathrm{~s}$. The total power dissipation in standby is approximately 475 mW .

Input Clock Stop

In addition, the converter enters a low-power mode when the input clock frequency falls below 1 MSPS. The power is approximately 275 mW .

POWER-SUPPLY SEQUENCE

During power-up, the AVDD and DRVDD supplies can come up in any sequence. The two supplies are separated in the device. Externally, they can be driven from separate supplies or from a single supply.

DIGITAL OUTPUT INFORMATION

The ADS62P19 provides 11-bit data and an output clock synchronized with the data.

Output Interface

Two output interface options are available: double data rate (DDR) LVDS and parallel CMOS. These options can be selected using the LVDS_CMOS serial interface register bit or using the DFS pin in parallel configuration mode.

DDR LVDS Outputs

In this mode, the data bits and clock are output using low-voltage differential signal (LVDS) levels. Two data bits are multiplexed and output on each LVDS differential pair, as shown in Figure 57.

Figure 57. LVDS Outputs

Even data bits (D0, D2, D4, and so forth) are output at the CLKOUTP rising edge and the odd data bits (D1, D3, D5, and so forth) are output at the CLKOUTP falling edge. Both the CLKOUTP rising and falling edges must be used to capture all the data bits (see Figure 58).

(1) Bit 0 is the dummy bit.

Figure 58. DDR LVDS Interface
www.ti.com

LVDS Buffer

The equivalent circuit of each LVDS output buffer is shown in Figure 59. The buffer is designed to present an output impedance of 100Ω ($\mathrm{R}_{\text {OUT }}$). The differential outputs can be terminated at the receive end by a $100-\Omega$ termination.
The buffer output impedance behaves like a source-side series termination. By absorbing reflections from the receiver end, the buffer output impedance helps improve signal integrity. Note that this internal termination cannot be disabled and its value cannot be changed.

Switch impedance is nominally $50 \Omega(\pm 10 \%)$.

NOTE: When the high switches are closed, OUTP $=1.375 \mathrm{~V}$ and OUTM $=1.025 \mathrm{~V}$. When the low switches are closed, OUTP $=1.025 \mathrm{~V}$ and OUTM $=1.375 \mathrm{~V}$. When either high or low switches are closed, ROUT $=100 \Omega$.

Figure 59. LVDS Buffer Equivalent Circuit

ParalleI CMOS Interface

In CMOS mode, each data bit is output on a separate pin as a CMOS voltage level for every clock cycle, as shown in Figure 60. This mode is recommended only up to 210 MSPS, beyond which the CMOS data outputs do not have sufficient time to settle to valid logic levels.
For sampling frequencies up to 150 MSPS, the output clock (CLKOUT) rising edge can be used to latch data in the receiver. The output data setup and hold times (with respect to CLKOUT) are specified in the Timing Requirements table up to 150 MSPS.

For sampling frequencies above 150 MSPS, TI recommends using an external clock to capture data. The delay from the input clock to output data and the data valid times are specified up to 210 MSPS. These timings can be used to delay the input clock appropriately and use it to capture data. When using the CMOS interface, the load capacitance detected by the data and clock output pins must be minimized by using short traces on the board.

Figure 60. CMOS Outputs

CMOS Interface Power Dissipation

With CMOS outputs, the DRVDD current scales with the sampling frequency and the load capacitance on every output pin. Maximum DRVDD current occurs when each output bit toggles between ' 0 ' and ' 1 ' every clock cycle. In actual applications, this condition is unlikely to occur. Actual DRVDD current is determined by the average number of output bits switching, which is a function of the sampling frequency and the nature of the analog input signal.

Digital current resulting from CMOS output switching $=\mathrm{C}_{\mathrm{L}} \times \mathrm{DRVDD} \times\left(\mathrm{N} \times \mathrm{f}_{\mathrm{AVG}}\right)$,
Where:
$\mathrm{C}_{\mathrm{L}}=$ load capacitance,
$\mathrm{N} \times \mathrm{f}_{\mathrm{AVG}}=$ average number of output bits switching.
Refer to Figure 31 for a plot of the current with various load capacitances across sampling frequencies at 2.5MHz analog input frequency.

Multiplexed Output Mode (Only with CMOS Interface)

In this mode, the digital outputs of both channels are multiplexed and output on a single bus (pins DA[10:0]). Channel B data bits are output at the CLKOUT rising edge, and channel A data bits are output at the CLKOUT falling edge. Channel B output data pins (DB[10:0]) are 3 -stated; refer to Figure 61 for details. Because the output data rate on the DA bus is effectively doubled, this mode is recommended only for low sampling frequencies (less than 65 MSPS).
Low-speed mode must be enabled for the multiplexed output mode (MUX mode). Therefore, MUX mode only functions with the serial interface configuration and is not supported with the parallel configuration. This mode can be enabled with the POWER DOWN MODES register bits or the parallel pins (CTRL1 to CTRL3).

(1) Both channel outputs are output on the channel A output data lines.
(2) Channel A outputs are output on the output clock falling edges, whereas channel B outputs are output on the output clock rising edges.

Figure 61. Multiplexed Output Mode Timing

Output Data Format

Two output data formats are supported: twos complement and offset binary. These modes can be selected using the DATA FORMAT serial interface register bit or by controlling the DFS pin in parallel configuration mode.

In the event of an input voltage overdrive, the digital outputs go to the appropriate full-scale level. For a positive overdrive, the output code is 7FFh in offset binary output format, and 3FFh in twos complement output format. For a negative input overdrive, the output code is 000 h in offset binary output format and 400 h in twos complement output format.

BOARD DESIGN CONSIDERATIONS

Grounding: A single ground plane is sufficient to provide good performance, provided the analog, digital, and clock sections of the board are cleanly partitioned. See the ADS62PXX EVM User's Guide (SLAU237) for details on layout and grounding.
Supply Decoupling: Because the ADS62P19 already includes internal decoupling, minimal external decoupling can be used without loss in performance. Note that decoupling capacitors can help filter external power-supply noise, thus the optimum number of capacitors depends on the actual application. The decoupling capacitors should be placed very close to the converter supply pins.
Exposed Pad: In addition to providing a path for heat dissipation, the pad is also internally electrically connected to the digital ground. Therefore, the exposed pad must be soldered to the ground plane for best thermal and electrical performance. For detailed information, see application notes QFN Layout Guidelines (SLOA122) and QFN/SON PCB Attachment (SLUA271).

DEFINITION OF SPECIFICATIONS

Analog Bandwidth: The analog input frequency at which the power of the fundamental is reduced by 3 dB with respect to the low-frequency value.
Aperture Delay: The delay in time between the input sampling clock rising edge and the actual time at which the sampling occurs. This delay is different across channels. The maximum variation is specified as aperture delay variation (channel-to-channel).
Aperture Uncertainty (Jitter): The sample-to-sample variation in aperture delay.
Clock Pulse Duration and Duty Cycle: The duty cycle of a clock signal is the ratio of the time the clock signal remains at a logic high (clock pulse duration) to the period of the clock signal. Duty cycle is typically expressed as a percentage. A perfect differential sine-wave clock results in a 50% duty cycle.
Maximum Conversion Rate: The maximum sampling rate at which certified operation is given. All parametric testing is performed at this sampling rate, unless otherwise noted.
Minimum Conversion Rate:The minimum sampling rate at which the ADC functions.
Differential Nonlinearity (DNL): An ideal ADC exhibits code transitions at analog input values spaced exactly 1 LSB apart. DNL is the deviation of any single step from this ideal value, measured in units of LSBs.

Integral Nonlinearity (INL): INL is the deviation of the ADC transfer function from a best-fit line determined by a least-squares-curve fit of that transfer function, measured in units of LSBs.
Gain Error: Gain error is the deviation of the ADC actual input full-scale range from its ideal value. Gain error is given as a percentage of the ideal input full-scale range. Gain error has two components: error resulting from reference inaccuracy and error resulting from the channel. Both errors are specified independently as $\mathrm{E}_{\text {GREF }}$ and $\mathrm{E}_{\mathrm{GCHAN}}$, respectively.
To a first-order approximation, the total gain error is $\mathrm{E}_{\text {TOTAL }} \sim \mathrm{E}_{\text {GREF }}+\mathrm{E}_{\text {GCHAN }}$.
For example, if $\mathrm{E}_{\text {TOTAL }}= \pm 0.5 \%$, the full-scale input varies from $(1-0.5 / 100) \times \mathrm{FS}_{\text {ideal }}$ to $(1+0.5 / 100) \times \mathrm{FS}_{\text {ideal }}$.
Offset Error: Offset error is the difference, given in number of LSBs, between the ADC actual average idle channel output code and the ideal average idle channel output code. This quantity is often mapped into millivolts.
Temperature Drift: The temperature drift coefficient (with respect to gain error and offset error) specifies the change per degree Celsius of the parameter from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$. Temperature drift is calculated by dividing the maximum deviation of the parameter across the $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ range by the difference of $\mathrm{T}_{\text {MAX }}-\mathrm{T}_{\text {MIN }}$.
Signal-to-Noise Ratio (SNR): SNR is the ratio of the power of the fundamental $\left(\mathrm{P}_{\mathrm{s}}\right)$ to the noise floor power $\left(P_{N}\right)$, excluding the power at dc and the first nine harmonics.

$$
\begin{equation*}
\mathrm{SNR}=10 \log ^{10} \frac{\mathrm{P}_{\mathrm{S}}}{\mathrm{P}_{\mathrm{N}}} \tag{1}
\end{equation*}
$$

SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter fullscale range.
Signal-to-Noise and Distortion (SINAD): SINAD is the ratio of the power of the fundamental (P_{S}) to the power of all other spectral components, including noise $\left(\mathrm{P}_{\mathrm{N}}\right)$ and distortion (P_{D}), but excluding dc.

$$
\begin{equation*}
\text { SINAD }=10 \log ^{10} \frac{P_{S}}{P_{N}+P_{D}} \tag{2}
\end{equation*}
$$

SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter fullscale range.

Effective Number of Bits (ENOB): ENOB is a measure of the converter performance as compared to the theoretical limit based on quantization noise.

$$
\begin{equation*}
\mathrm{ENOB}=\frac{\mathrm{SINAD}-1.76}{6.02} \tag{3}
\end{equation*}
$$

Total Harmonic Distortion (THD): THD is the ratio of the power of the fundamental $\left(\mathrm{P}_{\mathrm{s}}\right)$ to the power of the first nine harmonics (P_{D}).

$$
\begin{equation*}
\mathrm{THD}=10 \log ^{10} \frac{\mathrm{P}_{\mathrm{S}}}{\mathrm{P}_{\mathrm{N}}} \tag{4}
\end{equation*}
$$

THD is typically given in units of dBc (dB to carrier).
Spurious-Free Dynamic Range (SFDR): SFDR is the ratio of the power of the fundamental to the highest other spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).
Two-Tone Intermodulation Distortion (IMD3): IMD3 is the ratio of the power of the fundamental (at frequencies f_{1} and $\left.f_{2}\right)$ to the power of the worst spectral component at either frequency $\left(2 f_{1}-f_{2}\right)$ or $\left(2 f_{2}-f_{1}\right)$. IMD3 is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.
DC Power-Supply Rejection Ratio (DC PSRR): DC PSSR is the ratio of the change in offset error to a change in analog supply voltage. DC PSRR is typically given in units of millivolts per volt.
AC Power-Supply Rejection Ratio (AC PSRR): AC PSRR is the measure of rejection of variations in the supply voltage by the $A D C$. If $\Delta V_{\text {SUP }}$ is the change in supply voltage and $\Delta V_{\text {OUT }}$ is the resultant change of the ADC output code (referred to the input), then:

$$
\begin{equation*}
\mathrm{PSRR}=20 \log ^{10} \frac{\Delta \mathrm{~V}_{\text {OUT }}}{\Delta \mathrm{V}_{\text {SUP }}}(\text { Expressed in dBc) } \tag{5}
\end{equation*}
$$

Voltage Overload Recovery: The number of clock cycles taken to recover to less than 1% error after an overload on the analog inputs. This overload recovery is tested by separately applying a sine-wave signal with a $6-\mathrm{dB}$ positive and negative overload. The deviation of the first few samples after the overload (from the expected values) is noted.
Common-Mode Rejection Ratio (CMRR): CMRR is the measure of rejection of variation in the analog input common-mode by the ADC. If $\Delta \mathrm{V}_{\text {CM_IN }}$ is the change in the common-mode voltage of the input pins and $\Delta \mathrm{V}_{\text {OUT }}$ is the resultant change of the ADC output code (referred to the input), then:

$$
\begin{equation*}
\mathrm{CMRR}=20 \log ^{10} \frac{\Delta \mathrm{~V}_{\mathrm{OUT}}}{\Delta \mathrm{~V}_{\mathrm{CM}}} \quad \text { (Expressed in dBc) } \tag{6}
\end{equation*}
$$

Crosstalk (only for multichannel ADCs): Crosstalk is a measure of the internal coupling of a signal from an adjacent channel into the channel of interest. Crosstalk is specified separately for coupling from the immediate neighboring channel (near-channel) and for coupling from a channel across the package (far-channel). Crosstalk is usually measured by applying a full-scale signal in the adjacent channel. Crosstalk is the ratio of the power of the coupling signal (as measured at the output of the channel of interest) to the power of the signal applied at the adjacent channel input. Crosstalk is typically expressed in dBc (dB to carrier).

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Top-Side Markings (4)	Samples
ADS62P19IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ62P19	Samples
ADS62P19IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ62P19	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-leads (QFN) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

题 TEXAS
INSTRUMENTS
www.ti.com
RGC (S-PVQFN-N64) PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

> Bottom View
> Exposed Thermal Pad Dimensions

4206192-4/Y 04/13
NOTE: A. All linear dimensions are in millimeters

RGC (S-PVQFN-N64)

PLASTIC QUAD
 FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[^1]: (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

