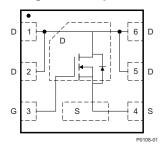


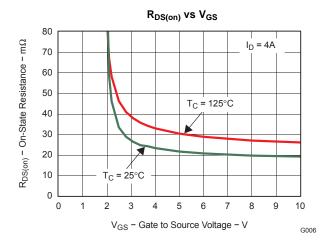
N-Channel NexFET™ Power MOSFETs

Check for Samples: CSD16301Q2

FEATURES

- Ultralow Q_g and Q_{gd}
- · Low Thermal Resistance
- Pb Free Terminal Plating
- RoHS Compliant
- · Halogen Free
- SON 2-mm × 2-mm Plastic Package


APPLICATIONS


- DC-DC Converters
- Battery and Load Management Applications

DESCRIPTION

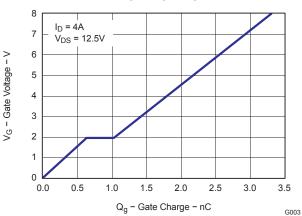
The NexFET™ power MOSFET has been designed to minimize losses in power conversion and load management applications. The SON 2x2 offers excellent thermal performance for the size of the package.

Figure 1. Top View

PRODUCT SUMMARY

V_{DS}	Drain to Source Voltage	25	V	
Q_g	Gate Charge Total (-4.5V)	2	nC	
Q_{gd}	Gate Charge Gate to Drain	0.4		nC
		V _{GS} = 3V	27	mΩ
R _{DS(on)}	Drain to Source On Resistance	V _{GS} = 4.5V	23	mΩ
		V _{GS} = 8V	19	mΩ
V _{GS(th)}	Threshold Voltage	1.1		V

ORDERING INFORMATION


Device	Package	Media	Qty	Ship
CSD16301Q2	SON 2-mm × 2-mm	13-Inch Reel	3000	Tape and Reel
C3D16301Q2	Plastic Package	7-Inch Reel	3000	Tape and Reel

ABSOLUTE MAXIMUM RATINGS

T _A = 2	5°C unless otherwise stated	VALUE	UNIT
V_{DS}	Drain to Source Voltage	25	V
V_{GS}	Gate to Source Voltage	+10 / –8	V
	Continuous Drain Current, T _C = 25°C	5	Α
I _D	Continuous Drain Current ⁽¹⁾	5	Α
I _{DM}	Pulsed Drain Current, T _A = 25°C ⁽²⁾	20	Α
P_D	Power Dissipation ⁽¹⁾	2.3	W
T _J , T _{STG}	Operating Junction and Storage Temperature Range	-55 to 150	°C
E _{AS}	Avalanche Energy, single pulse I_D = 14A, L = 0.1mH, R_G = 25 Ω	10	mJ

- (1) Packaged Limited
- (2) Pulse duration 10 μ s, duty cycle \leq 2%

GATE CHARGE

M

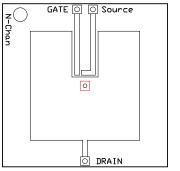
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

NexFET is a trademark of Texas Instruments.

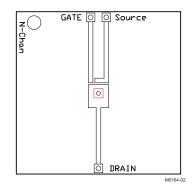
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ELECTRICAL CHARACTERISTICS

T_A = 25°C, unless otherwise specified


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Static Cl	haracteristics		,			
BV _{DSS}	Drain to Source Voltage	$V_{GS} = 0V, I_D = 250\mu A$	25			V
I _{DSS}	Drain to Source Leakage Current	V _{GS} = 0V, V _{DS} = 20V			1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{DS} = 0V, V_{GS} = +10/-8V$			100	nA
$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}, I_{DS} = 250 \mu A$	0.9	1.1	1.55	V
		$V_{GS} = 3V$, $I_{DS} = 4A$		27	34	mΩ
R _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 4.5V$, $I_{DS} = 4A$		23	29	mΩ
		V_{GS} = 8V, I_{DS} = 4A		19	24	mΩ
9 _{fs}	Transconductance	V _{DS} = 15V, I _{DS} = 4A		16.5		S
Dynamic	Characteristics				•	
C _{ISS}	Input Capacitance			260	340	pF
Coss	Output Capacitance	$V_{GS} = 0V$, $V_{DS} = 12.5V$, $f = 1MHz$		165	215	pF
C _{RSS}	Reverse Transfer Capacitance			13	17	pF
R_g	Series Gate Resistance			1.3	2.6	Ω
Q_g	Gate Charge Total (4.5V)			2	2.8	nC
Q_{gd}	Gate Charge – Gate to Drain	V _{DS} = 10V, I _{DS} = 4A		0.4		nC
Q _{gs}	Gate Charge Gate to Source	V _{DS} = 10V, I _{DS} = 4A		0.6		nC
Qg(th)	Gate Charge at Vth			0.3		nC
Q _{OSS}	Output Charge	V _{DS} = 12.5V, V _{GS} = 0V		3		nC
$t_{d(on)}$	Turn On Delay Time			2.7		ns
t _r	Rise Time	V _{DS} = 12.5V, V _{GS} = 4.5V, I _{DS} = 4A		4.4		ns
$t_{d(off)}$	Turn Off Delay Time	$R_G = 2\Omega$		4.1		ns
t _f	Fall Time			1.7		ns
Diode C	haracteristics					
V_{SD}	Diode Forward Voltage	$I_{DS} = 4A$, $V_{GS} = 0V$		0.8	1	V
Q_{rr}	Reverse Recovery Charge	V_{DD} = 12.5V, I_F = 4A, di/dt = 200A/ μ s		5.1		nC
t _{rr}	Reverse Recovery Time	V_{DD} = 12.5V, I_F = 4A, di/dt = 200A/ μ s		11		ns

THERMAL INFORMATION


	THERMAL METRIC(1)(2)	CSD16301Q2	LINUTO
	THERMAL METRIC (1)(2)		UNITS
θ_{JA}	Junction-to-ambient thermal resistance (3)(4)	69	
θ_{JCtop}	Junction-to-case (top) thermal resistance (3)	8.4	
θ_{JB}	Junction-to-board thermal resistance		°C/W
Ψ_{JT}	Junction-to-top characterization parameter		C/VV
ΨЈВ	Junction-to-board characterization parameter		
θ_{JCbot}	Junction-to-case (bottom) thermal resistance		

- For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.
 For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.
 R_{BJC} is determined with the device mounted on a 1-inch² (6.45-cm²), 2-oz. (0.071-mm thick) Cu pad on a 1.5-inch × 1.5-inch (3.81-cm × 3.81-cm), 0.06-inch (1.52-mm) thick FR4 PCB. R_{BJC} is specified by design, whereas R_{BJA} is determined by the user's board design.
 Device mounted on FR4 material with 1-inch² (6.45-cm²), 2-oz. (0.071-mm thick) Cu.

Max $R_{\theta JA} = 69^{\circ} C/W$ when mounted on 1 inch² (6.45 cm²) of 2-oz. (0.071-mm thick) Cu.

Max $R_{\theta JA} = 220^{\circ} C/W$ when mounted on minimum pad area of 2-oz. (0.071-mm thick) Cu.

TYPICAL MOSFET CHARACTERISTICS

 $T_A = 25$ °C, unless otherwise specified

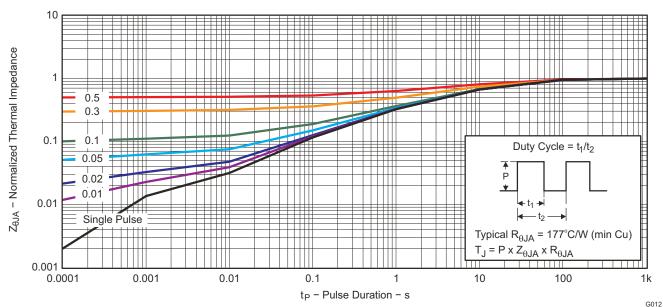


Figure 2. Transient Thermal Impedance

TYPICAL MOSFET CHARACTERISTICS (continued)

T_A = 25°C, unless otherwise specified

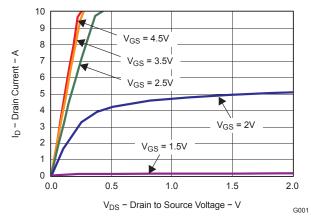


Figure 3. Saturation Characteristics

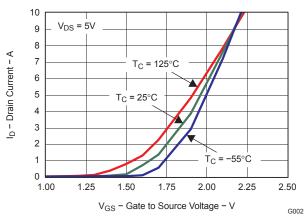


Figure 4. Transfer Characteristics

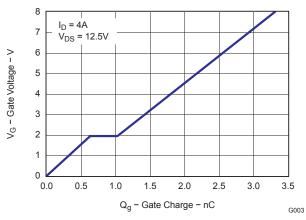


Figure 5. Gate Charge

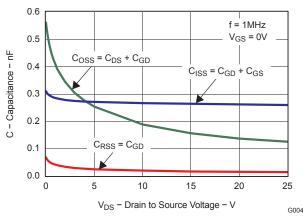


Figure 6. Capacitance

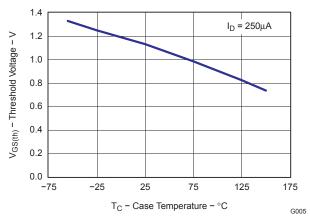


Figure 7. Threshold Voltage vs. Temperature

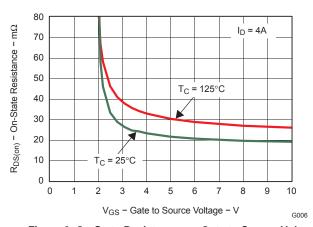


Figure 8. On-State Resistance vs. Gate to Source Voltage

TYPICAL MOSFET CHARACTERISTICS (continued)

T_A = 25°C, unless otherwise specified

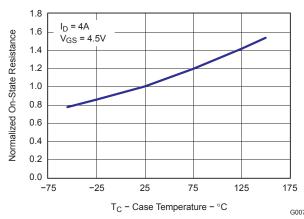


Figure 9. Normalized On-State Resistance vs. Temperature

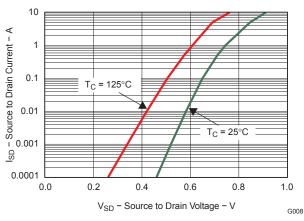


Figure 10. Typical Diode Forward Voltage

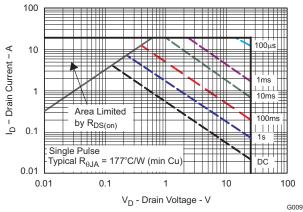


Figure 11. Maximum Safe Operating Area

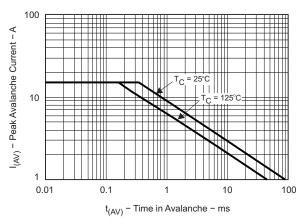
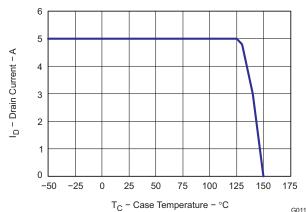
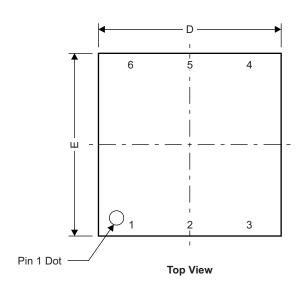
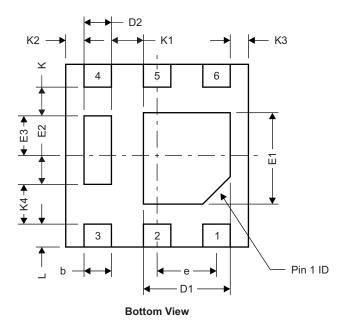
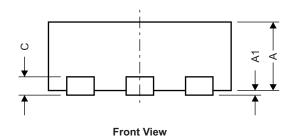


Figure 12. Single Pulse Unclamped Inductive Switching

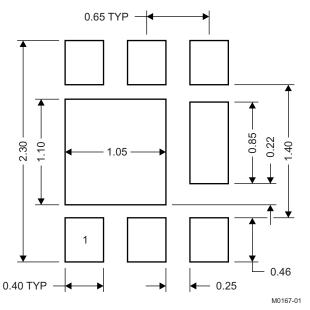




Figure 13. Maximum Drain Current vs. Temperature



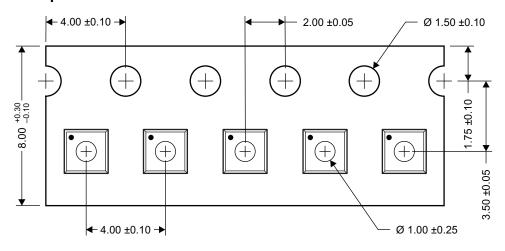
MECHANICAL DATA

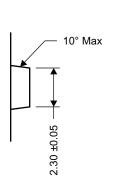
Q2 Package Dimensions

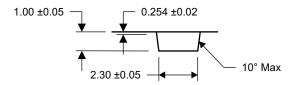


M0165-01

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.700	0.750	0.800	0.028	0.030	0.032
A1	0.000		0.050	0.000		0.002
b	0.250	0.300	0.350	0.010	0.012	0.014
С		0.203 TYP			0.008 TYP	
D		2.000 TYP			0.080 TYP	
D1	0.900	0.950	1.000	0.036	0.038	0.040
D2		0.300 TYP		0.012 TYP		
Е	2.000 TYP			0.080 TYP		
E1	0.900	1.000	1.100	0.036	0.040	0.044
E2		0.280 TYP		0.0112 TYP		
E3		0.470 TYP		0.0188 TYP		
е		0.650 BSC			0.026 TYP	
K		0.280 TYP		0.0112 TYP		
K1	0.350 TYP			0.014 TYP		
K2	0.200 TYP			0.008 TYP		
K3	0.200 TYP			0.008 TYP		
K4	0.470 TYP			0.0188 TYP		
L	0.200	0.25	0.300	0.008	0.010	0.012


Recommended PCB Pattern




Note: All dimensions are in mm, unless otherwise specified.

For recommended circuit layout for PCB designs, see application note SLPA005 – Reducing Ringing Through PCB Layout Techniques.

Q2 Tape and Reel Information

M0168-01

Notes: 1. Measured from centerline of sprocket hole to centerline of pocket

- 2. Cumulative tolerance of 10 sprocket holes is ± 0.20
- 3. Other material available
- 4. Typical SR of form tape Max 109 OHM/SQ
- 5. All dimensions are in mm, unless otherwise specified.

SLPS235C - OCTOBER 2009-REVISED JULY 2011

REVISION HISTORY

Changes from Original (October 2009) to Revision A	Page
Changed the Electrical Characteristics table - V _{GS(th)} MAX value From: 1.4V To 1.55V	2
Changes from Revision A (December 2009) to Revision B	Page
Added title to Figure 12 - Single Pulse Unclamped Inductive Switching	5
Deleted the Package Marking Information section	7
Changes from Revision B (April 2010) to Revision C	Page
Added a 7-Inch Reel option to the Ordering Information Table	1

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com