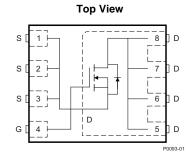


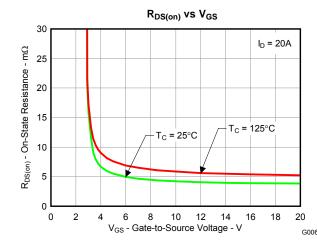
SLPS271G -JULY 2010-REVISED SEPTEMBER 2012

30V, N-Channel NexFET™ Power MOSFETs

Check for Samples: CSD17510Q5A

FEATURES


- Ultralow Q_g and Q_{gd}
- Low Thermal Resistance
- Avalanche Rated
- Pb Free Terminal Plating
- RoHS Compliant
- Halogen Free
- SON 5-mm × 6-mm Plastic Package


APPLICATIONS

- Point-of-Load Synchronous Buck in Networking, Telecom, and Computing Systems
- Optimized for Control and Synchronous FET
 Applications

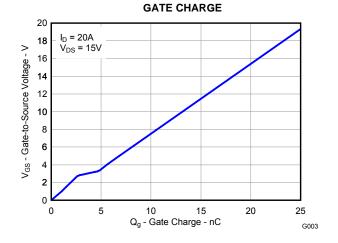
DESCRIPTION

The NexFET[™] power MOSFET has been designed to minimize losses in power conversion applications.

PRODUCT SUMMARY

V _{DS}	Drain to Source Voltage 30			
Qg	Gate Charge Total (4.5V)	6.4	nC	
Q _{gd}	Gate Charge Gate to Drain	1.9	nC	
D	Drain to Source On Resistance	$V_{GS} = 4.5V$	5.4	mΩ
R _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 10V$	4.1	mΩ
V _{GS(th)}	Threshold Voltage	1.5		V

ORDERING INFORMATION


Device	Package	Media	Qty	Ship
CSD17510Q5A	SON 5-mm × 6-mm Plastic Package	13-Inch Reel	2500	Tape and Reel

ABSOLUTE MAXIMUM RATINGS

$T_A = 2$	5°C unless otherwise stated	VALUE	UNIT
V _{DS}	Drain to Source Voltage	30	V
V_{GS}	Gate to Source Voltage	±20	V
	Continuous Drain Current, $T_C = 25^{\circ}C$	55	А
ID	Continuous Drain Current ⁽¹⁾	20	А
I _{DM}	Pulsed Drain Current, $T_A = 25^{\circ}C^{(2)}$	129	А
PD	Power Dissipation ⁽¹⁾	3	W
T _J , T _{STG}	Operating Junction and Storage Temperature Range	-55 to 150	°C
E _{AS}	Avalanche Energy, single pulse I _D = 54A, L = 0.1mH, R _G = 25Ω	146	mJ

(1) Typical $R_{\theta JA} = 41^{\circ}C/W$ on 1-inch² (6.45-cm²), 2-oz. (0.071-mm thick) Cu pad on a 0.06-inch (1.52-mm) thick FR4 PCB.

(2) Pulse duration \leq 300µs, duty cycle \leq 2%

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NexFET is a trademark of Texas Instruments.

CSD17510Q5A

SLPS271G -JULY 2010-REVISED SEPTEMBER 2012

KAS TRUMENTS

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

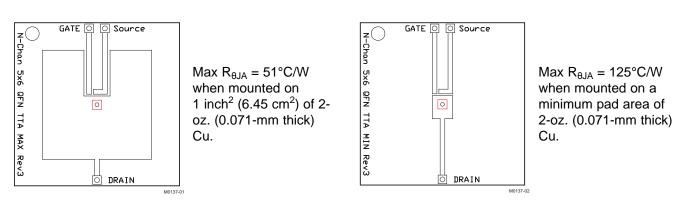
ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Static Cl	naracteristics					
BV _{DSS}	Drain to Source Voltage	$V_{GS} = 0V, I_{DS} = 250\mu A$	30			V
I _{DSS}	Drain to Source Leakage Current	$V_{GS} = 0V, V_{DS} = 24V$			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{DS} = 0V, V_{GS} = 20V$			100	nA
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}$, $I_{DS} = 250 \mu A$	1	1.5	2.1	V
Р	Drain to Source On Registeres	$V_{GS} = 4.5V, I_{DS} = 20A$		5.4	7.3	mΩ
R _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 10V, I_{DS} = 20A$		4.1	5.2	mΩ
g _{fs}	Transconductance	$V_{DS} = 15V, I_{DS} = 20A$		59		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance		960 1		1250	I250 pF
C _{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 15V,$ f = 1MHz		630	820	pF
C _{rss}	Reverse Transfer Capacitance			51	66	pF
R _G	Series Gate Resistance			0.85	1.7	Ω
Qg	Gate Charge Total (4.5V)			6.4	8.3	nC
Q _{gd}	Gate Charge Gate to Drain			1.9		nC
Q _{gs}	Gate Charge Gate to Source	V _{DS} = 15V, I _{DS} = 20A		2.7		nC
Q _{g(th)}	Gate Charge at Vth			1.5		nC
Q _{oss}	Output Charge	$V_{DS} = 13.5V, V_{GS} = 0V$		16		nC
t _{d(on)}	Turn On Delay Time			7		ns
t _r	Rise Time	V _{DS} = 15V, V _{GS} = 4.5V,		11		ns
t _{d(off)}	Turn Off Delay Time	$I_{DS} = 20A, R_G = 2\Omega$		9		ns
t _f	Fall Time			4.1		ns
Diode Cl	haracteristics					
V _{SD}	Diode Forward Voltage	$I_{SD} = 20A, V_{GS} = 0V$		0.85	1	V
Q _{rr}	Reverse Recovery Charge		25			nC
t _{rr}	Reverse Recovery Time	V_{DD} = 13.5V, I _F = 20A, di/dt = 300A/µs		24		ns

THERMAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$


	PARAMETER	MIN	TYP	MAX	UNIT
$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case ⁽¹⁾			1.6	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient ⁽¹⁾⁽²⁾			51	°C/W

(1) R_{θJC} is determined with the device mounted on a 1-inch² (6.45-cm²), 2-oz. (0.071-mm thick) Cu pad on a 1.5-inch × 1.5-inch (3.81-cm × 3.81-cm), 0.06-inch (1.52-mm) thick FR4 PCB. R_{θJC} is specified by design, whereas R_{θJA} is determined by the user's board design.
 (2) Device mounted on FR4 material with 1-inch² (6.45-cm²), 2-oz. (0.071-mm thick) Cu.

CSD17510Q5A

SLPS271G -JULY 2010-REVISED SEPTEMBER 2012

TYPICAL MOSFET CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

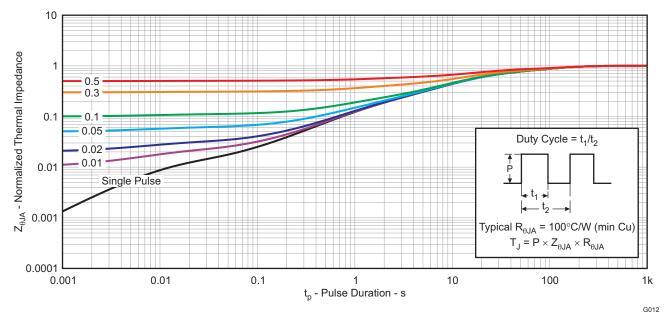


Figure 1. Transient Thermal Impedance

SLPS271G -JULY 2010-REVISED SEPTEMBER 2012

Texas Instruments

www.ti.com

TYPICAL MOSFET CHARACTERISTICS (continued)

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

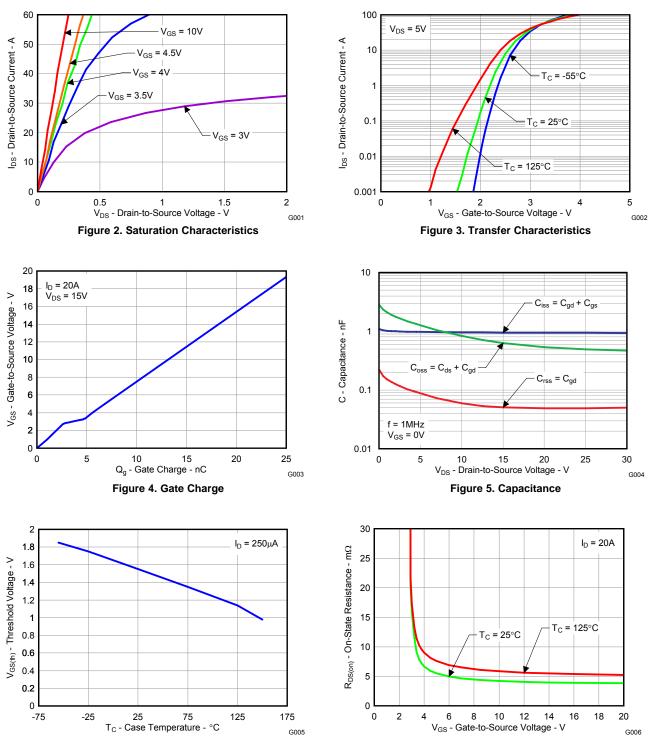
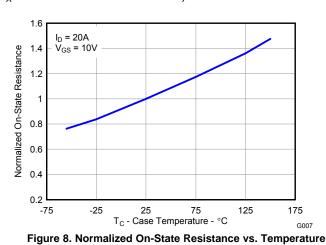
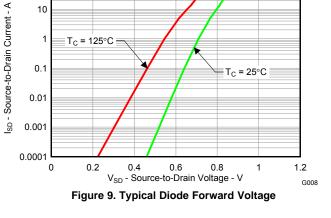


Figure 7. On-State Resistance vs. Gate-to-Source Voltage

Figure 6. Threshold Voltage vs. Temperature




SLPS271G - JULY 2010-REVISED SEPTEMBER 2012

TYPICAL MOSFET CHARACTERISTICS (continued)

100

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

2000 1000 1ms 100ms - DC I_{DS} - Drain-to-Source Current - A 10ms . 1s 100 ┝┪╦╢ 10 1 0.1 Single Pulse Typical R_{thetaJA} =100°C/W(min Cu) 0.01 L 0.01

0.1

Figure 10. Maximum Safe Operating Area

V_{DS} - Drain-to-Source Voltage - V

1

10

50

G001

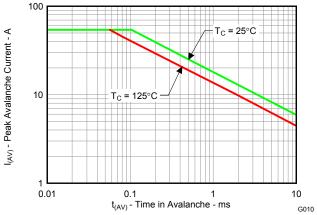
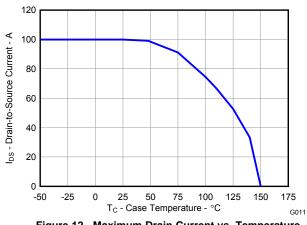
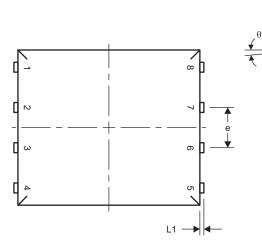
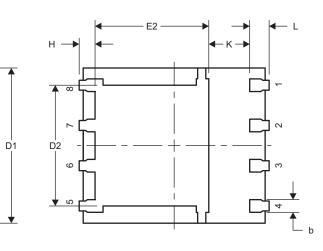


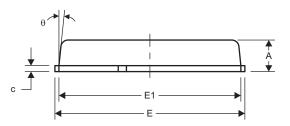
Figure 11. Single Pulse Unclamped Inductive Switching


Figure 12. Maximum Drain Current vs. Temperature

MECHANICAL DATA

Q5A Package Dimensions

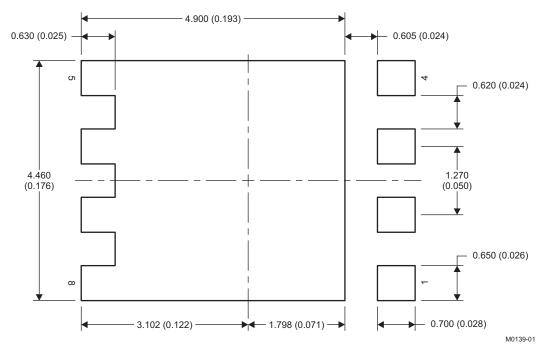


Bottom View

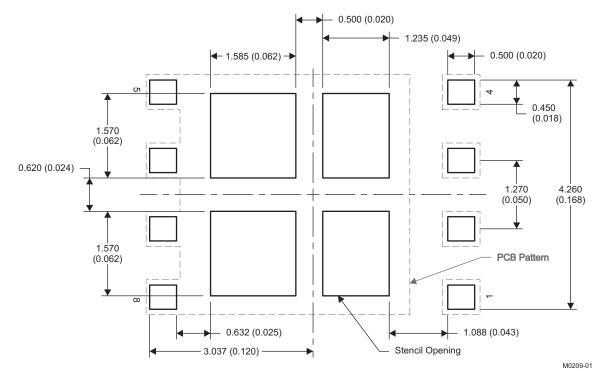
Top View

Side View

Front View


M0135-01

DIM	MILLIMETERS							
DIM	MIN	NOM	MAX					
A	0.90	1.00	1.10					
b	0.33	0.41	0.51					
С	0.20	0.25	0.34					
D1	4.80	4.90	5.00					
D2	3.61	3.81	4.02					
E	5.90	6.00	6.10					
E1	5.70	5.75	5.80					
E2	3.38	3.58	3.78					
е	1.17	1.27	1.37					
Н	0.41	0.56	0.71					
К	1.10							
L	0.51	0.61	0.71					
L1	0.06	0.13	0.20					
θ	0°		12°					

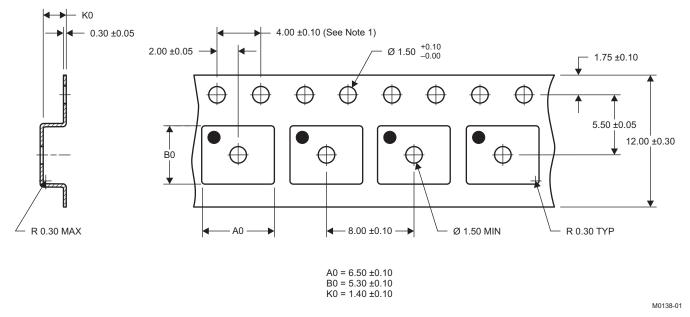

SLPS271G -JULY 2010-REVISED SEPTEMBER 2012

Recommended PCB Pattern

NOTE: Dimensions are in mm (inches).

Stencil Recommendation

NOTE: Dimensions are in mm (inches).


For recommended circuit layout for PCB designs, see application note SLPA005 – Reducing Ringing Through PCB Layout Techniques.

SLPS271G – JULY 2010-REVISED SEPTEMBER 2012

www.ti.com

Q5A Tape and Reel Information

NOTES: 1. 10-sprocket hole-pitch cumulative tolerance ± 0.2

- 2. Camber not to exceed 1mm in 100mm, noncumulative over 250mm
- 3. Material: black static-dissipative polystyrene
- 4. All dimensions are in mm (unless otherwise specified)
- 5. A0 and B0 measured on a plane 0.3mm above the bottom of the pocket

REVISION HISTORY

Changes from Original (July 2010) to Revision A	Page
Changed the Y axis scale for Figure 5	4
Changes from Revision A (August 2010) to Revision B	Page
- Changed $R_{DS(on)}$ Test Conditions From V_{GS} = 8V To: V_{GS} = 10V	2
Changes from Revision B (September 2010) to Revision C	Page
Absolute Maximum Ratings, changed the E _{AS} value from 45 to 146 mJ	1
Changes from Revision C (September 2010) to Revision D	Page
Added the Stencil Recommendation section	
Changes from Revision D (November 2010) to Revision E	Page
 Changed V_{GS} in the Abs Max Ratings table From: +20/-12V To: ±20V Changed from +20/-12V to 20V 	

Changes from Revision F (October 2011) to Revision G

CSD17510Q5A

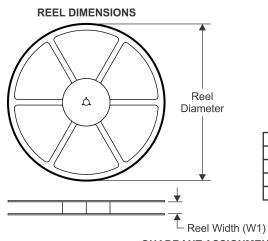
Page

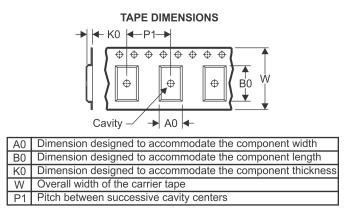
www.ti.com

SLPS271G -JULY 2010-REVISED SEPTEMBER 2012

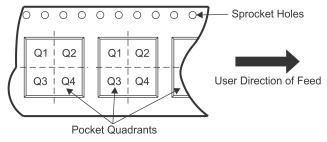
Changes from Revision E (July 2011) to Revision F				
•	Changed the I _D Continuous Drain Current, $T_c = 25^{\circ}C$ value From: 100 A To: 55 A.	1		
•	Changed Figure 10	5		
		_		

Changed Figure 10 5


Copyright © 2010–2012, Texas Instruments Incorporated


PACKAGE MATERIALS INFORMATION

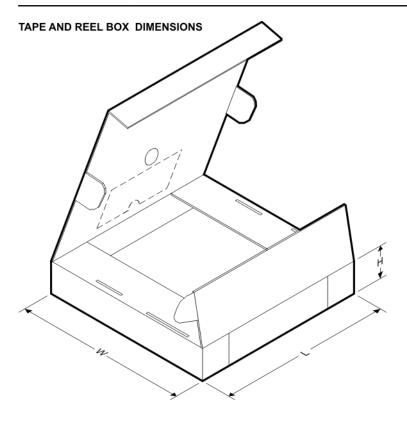
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	
-----------------------------	--


Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD17510Q5A	SON	DQJ	8	2500	330.0	12.4	6.3	5.3	1.2	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

8-Apr-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CSD17510Q5A	SON	DQJ	8	2500	340.0	340.0	38.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated