

DIGITALLY MANAGED PUSH-PULL ANALOG PWM CONTROLLERS

FEATURES

- For Digitally Managed Power Supplies Using uCs or the TMS320 ™ DSP Family
- Voltage or Peak Current Mode Control with Cycle-by-Cycle Current Limiting
- Clock input from Digital Controller to set **Operating Frequency and Max Duty Cycle**
- Analog PWM Comparator
- 2-MHz Switching Frequency •
- **110-V Input Startup Circuit and Thermal** . Shutdown (UCD8620)
- **Internal Programmable Slope Compensation** .
- 3.3-V, 10-mA Linear Regulator
- DSP/µC Compatible Inputs .
- Dual 4-A TrueDrive[™] High Current Drivers
- 10-ns Typical Rise and Fall Times with 2.2-nF
- 25-ns Input-to-Output Propagation Delay
- 25-ns Current Sense-to-Output Propagation • Delav
- **Programmable Current Limit Threshold**
- **Digital Output Current Limit Flag**
- 4.5-V to 15.5-V Supply Voltage Range
- Rated from -40C to 105C

APPLICATIONS

- **Digitally Managed Switch Mode Power** • Supplies
- Push-Pull, Half-Bridge, or Full-Bridge Converters
- **Battery Chargers**

DESCRIPTION

The UCD8220 analog pulse-width modulator device is used in digitally managed power supplies using a microcontroller or the TMS320[™] DSP family.

UCD8220 ia a double-ended PWM controller configured with push-pull drive logic.

Systems using the UCD8220 device close the PWM feedback loop with traditional analog methods, but the UCD8220 controller includes circuitry to interpret a time-domain digital pulse train. The pulse train contains the operating frequency and maximum duty cycle limit which are used to control the power supply operation. This eases implementation of a converter with high level control features without the added complexity or possible PWM resolution limitations of closing the control loop in the discrete time domain.

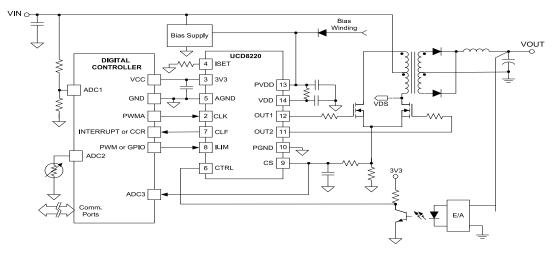
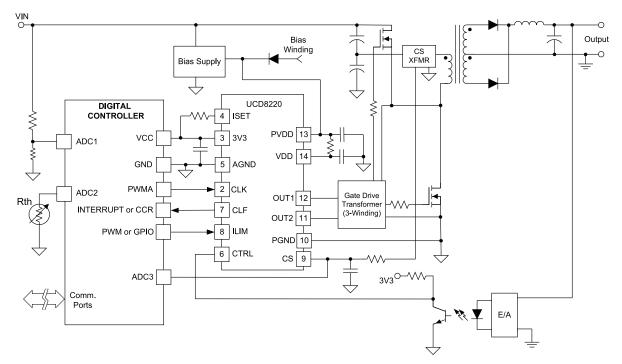


Figure 1. UCD8220 Typical Simplified Push-Pull Converter Application Schematic

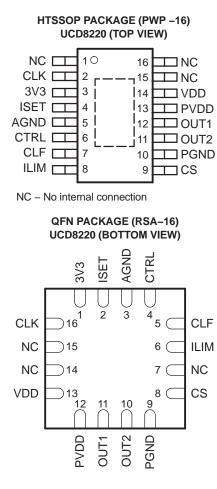

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of ÆΑ Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. TMS320, TrueDrive, PowerPAD are trademarks of Texas Instruments.

DESCRIPTION (continued)

The UCD8220 can be configured for either peak current mode or voltage mode control. It provides a programmable current limit function and a digital output current limit flag which can be monitored by the host controller to set the current limit operation. For fast switching speeds, the output stage uses the TrueDrive[™] architecture, which delivers rated current of 4 A into the gate of a MOSFET. Finally it also includes a 3.3-V, 10-mA linear regulator to provide power to the digital controller or act as a reference in the system.

The UCD8220 controller is compatible with the standard 3.3-V I/O ports of UCD9K digital power controllers, DSPs, Microcontrollers, or ASICs and is offered in PowerPAD[™] HTSSOP and QFN packages.

SIMPLIFIED APPLICATION DIAGRAMS


Figure 2. UCD8220 Typical Simplified Half-Bridge Converter Application Schematic

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

CONNECTION DIAGRAMS

ORDERING INFORMATION

TEMPERATURE RANGE	110-V HV STARTUP	PACKAGED DEVICES ⁽¹⁾⁽²⁾⁽³⁾					
	CIRCUIT	PowerPAD™ HTSSOP-16 (PWP)	QFN-16 (RSA) ⁽⁴⁾	QFN-20 (RGW)			
-40C to 105C	No	UCD8220PWP	UCD8220RSA	-			

HTSSOP-16 (PWP), QFN-16 (RSA), and QFN-20 (RGW) packages are available taped and reeled. Add R suffix to device type (e.g. UCD8220PWPR) to order quantities of 2,000 devices per reel for the PWP package and 1,000 devices per reel for the RSA and RGW packages.

(2) These products are packaged in Pb-Free and Green lead finish of Pd-Ni-Au which is compatible with MSL level 1 at 255C to 260C peak reflow temperature to be compatible with either lead free or Sn/Pb soldering operations.

(3) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.

(4) Contact factory for availability of QFN packaging.

UCD8220

SLUS652D-MARCH 2005-REVISED OCTOBER 2006

PACKAGING INFORMATION

PACKAGE	SUFFIX	θ _{JC} (°C/W)	θ _{JA} (°C/W)	POWER RATING T_A = 70°C, T_J = 125°C (mW)	RATING FACTOR ABOVE 70°C (mW/°C)
PowerPad™ MSSOP-16	PWP	2.07	37.47 ⁽¹⁾	1470	27
QFN-16	RSA	-	-	-	-
QFN-20	RGW	-	-	-	-

(1) PowerPad[™] soldered to the PWB with TI recommended PWB as defined in TI's Application Report (TI Literature Number SLMA002) with OLFM.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾

SYMBOL		PARAMETER	UCD8x20	UNIT	
V _{DD}	Supply Voltage		16	V	
	Quarky Quarant	Quiescent	20		
DD	Supply Current	Switching, $T_A = 25^{\circ}C$, $T_J = 125^{\circ}C$, $V_{DD} = 12 V$	200	— mA	
Vo	Output Gate Drive Voltage	OUT	-1 to PVDD	V	
I _{O(sink)}	Output Oata Drive Ourrant		4.0	^	
I _{O(source)}	Output Gate Drive Current	put Gate Drive Current OUT		- A	
Analog Input Digital I/O's	nalog Input ISET, CS, CTRL, ILIM				
	Digital I/O's	CLK, CLF	-0.3 to 3.6		
		$T_A = 25C$ (PWP-16 package)ower Dissipation $T_A = 25C$ (QFN-16 package)		W	
	Power Dissipation			- vv	
		T _A = 25C (QFN-20 package)	-		
TJ	Junction Operating Temperature	UCD8220	-55 to 150	С	
T _{stg}	Storage Temperature		-65 to 150		
HBM	– ESD Rating ⁽³⁾	Human body model	2000	V	
CDM		Charged device model	500	v	
	Lead Temperature (Soldering	, 10 sec)	300	С	

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to GND. Currents are positive into, negative out of the specified terminal.

(3) Tested to JEDEC standard EIA/JESD22 - A114-B.

ELECTRICAL CHARACTERISTICS

 V_{DD} = 12 V, 4.7-F capacitor from V_{DD} to AGND, 1 µF from PVDD to PGND, 0.22-F capacitor from 3V3 to AGND, T_A = T_J = -40C to 105C, (unless otherwise noted).

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY SECTION					
Supply current, OFF	$V_{DD} = 4.2 V$		300	500	А
Supply current, ON	(UCD8220), outputs not switching, CLK = low	2		3	mA
LOW VOLTAGE UNDERVOLTAGE L	OCKOUT (UCD8220 only)				
V _{DD} UVLO ON		4.25	4.5	4.75	V
V _{DD} UVLO OFF		4.05	4.25	4.45	v
V _{DD} UVLO hysteresis		150	250	350	mV
REFERENCE / EXTERNAL BIAS SU	PPLY				
3V3 initial set point	$T_{A} = 25C, I_{LOAD} = 0$	3.267	3.3	3.333	V
3V3 set point over temperature		3.234	3.3	3.366	V
3V3 load regulation	I_{LOAD} = 1 mA to 10 mA, VDD = 5 V	-	1	6.6	
3V3 line regulation	VDD = 4.75 V to 12 V, I _{LOAD} = 10 mA	-	1	6.6	mV
Short circuit current	VDD = 4.75 to 12 V	11	20	35	mA
3V3 OK threshold, ON	3.3 V rising	2.9	3.0	3.1	
3V3 OK threshold, OFF	3.3 V falling	2.7	2.8	2.9	V
CLOCK INPUT (CLK)	· !				
HIGH, positive-going input threshold voltage (VIT+)		1.65	-	2.08	
LOW negative-going input threshold voltage (VIT-)		1.16	-	1.5	V
Input voltage hysteresis, (VIT+ - VIT-)		0.6	-	0.8	
Frequency	OUTx = 1 MHz	-	-	2	MHz
Minimum allowable off time ⁽¹⁾				20	ns
SLOPE COMPENSATION (ISET)					
ISET Voltage	V _{ISET} , 3V3 = 3.3 V, +/-2%	1.78	1.84	1.90	V
	$R_{ISET} = 6.19 \text{ k}\Omega$ to AGND, CS = 0.25 V, CTRL = 2.5 V	1.48	2.12	2.76	
m, V _{SLOPE} (I-Mode)	R_{ISET} = 100 k Ω to AGND, CS = 0.25 V, CTRL = 2.5 V	0.099	0.142	0.185	
	R_{ISET} = 499 k Ω to AGND, CS = 0.25 V, CTRL = 2.5 V	0.019	0.028	0.037	
	R _{ISET} = 4.99 kΩ to 3V3, CTRL = 2.5 V	1.44	2.06	2.68	V/s
m, V _{SLOPE} (V-Mode)	$R_{ISET} = 100 \text{ k}\Omega$ to 3V3, CTRL = 2.5 V	0.079	0.114	0.148	
	$R_{ISET} = 402 \text{ k}\Omega \text{ to } 3v3, \text{ CTRL} = 2.5 \text{ V}$	0.019	0.027	0.035	
ISET resistor range	Current mode control; RISET connected to AGND	6.19		499	
ISET resistor range	Voltage mode control; R _{ISET} connected to 3V3	4.99		402	kΩ
ISET current range	Voltage mode control with Feed-Forward; R_{ISET} connected to VIN	3.7		300	μA
PWM				I	
PWM offset at CTRL input	3V3 = 3.3 V +/-2%	0.45	0.51	0.6	V
CTRL buffer gain ⁽¹⁾	Gain from CTRL to PWM comparator input		0.5		V/V
CURRENT LIMIT (ILIM)	· ·				
ILIM internal current limit threshold	ILIM = OPEN	0.466	0.5	0.536	V
ILIM maximum current limit threshold	ILIM = 3.3 V	0.975	1.025	1.075	
					V
ILIM current limit threshold	ILIM = 0.75 V	0.700	0.725	0.750	

(1) Ensured by design. Not 100% tested in production.

ELECTRICAL CHARACTERISTICS (continued)

 V_{DD} = 12 V, 4.7-F capacitor from V_{DD} to AGND, 1 μ F from PVDD to PGND, 0.22-F capacitor from 3V3 to AGND, T_A = T_J = -40C to 105C, (unless otherwise noted).

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CLF output high level	CS > ILIM , I _{LOAD} = -7 mA	2.64	-	-	V
CLF output low level	CS ≤ ILIM, I _{LOAD} = 7 mA	-	-	0.66	v
Propagation delay from CLK to CLF	CLK rising to CLF falling after a current limit event	-	15	25	ns
CURRENT SENSE COMPARATOR					
Bias voltage	Includes CS comp offset	5	25	50	mV
Input bias current		-	-1	-	μA
Propagation delay from CS to OUTx	ILIM = 0.5 V, measured on OUTx, CS = threshold + 60 mV	-	25	40	
Propagation delay from CS to CLF	ILIM = 0.5 V, measured on CLF, CS = threshold + 60 mV	-	25	50	ns
CURRENT SENSE DISCHARGE TRA	NSISTOR				
Discharge resistance	CLK = low, resistance from CS to AGND	10	35	75	Ω
OUTPUT DRIVERS					
Source current ⁽²⁾	V_{DD} = 12 V, CLK = high, OUTx = 5 V	-	4	-	
Sink current ⁽²⁾	V_{DD} = 12 V, CLK = low, OUTx = 5 V	-	4	-	^
Source current ⁽²⁾	$V_{DD} = 4.75 \text{ V}, \text{ CLK} = \text{high}, \text{ OUTx} = 0$	-	2	-	A
Sink current ⁽²⁾	V _{DD} = 4.75 V, CLK = low, OUTx = 4.75 V	-	3	-	
Rise time, t _R	C_{LOAD} = 2.2 nF, V_{DD} = 12 V	-	10	20	
I time, t_F C _{LOAD} = 2.2 nF, V_{DD} = 12 V		-	10	15	ns
Output with V _{DD} < UVLO	V _{DD} = 1.0 V, I _{SINK} = 10 mA	-	0.8	1.2	V
Propagation dolou from CLK to CLTV	C_{LOAD} = open, V_{DD} = 12 V, CLK rising, t_{D1}	-	25	35	~~~
Propagation delay from CLK to OUTx	C_{LOAD} = open, V_{DD} = 12 V, CLK falling, t_{D2}		25	35	ns

(2) Ensured by design. Not 100% tested in production.

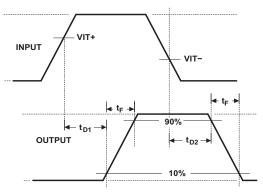
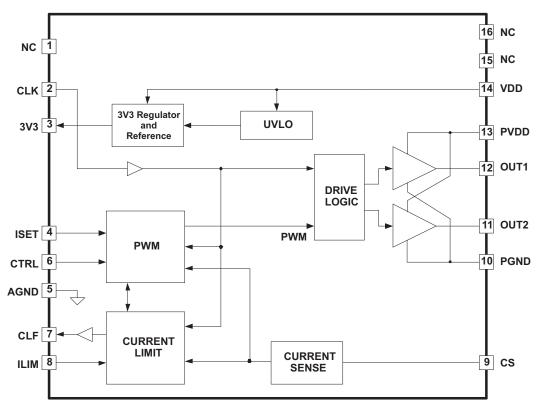
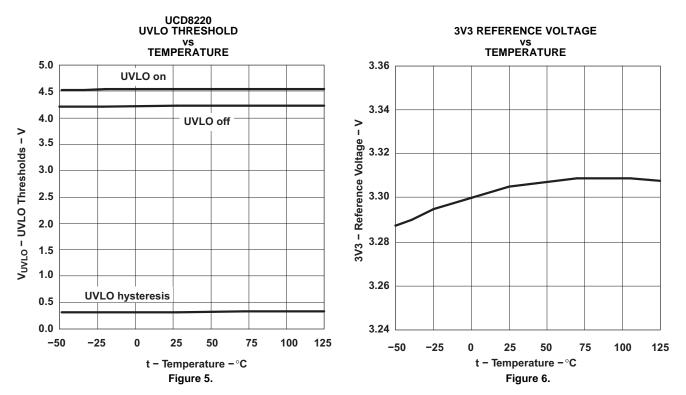



Figure 3. Timing Diagram

FUNCTIONAL BLOCK DIAGRAMS

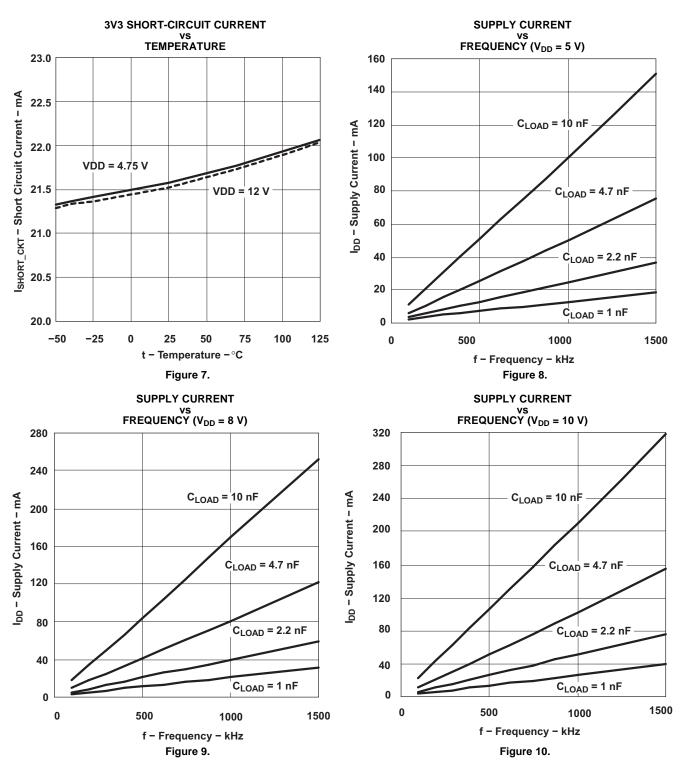
Figure 4. UCD8220

TERMINAL	FUNCTIONS
----------	-----------


PIN NUMBER				
PIN NAME	UCD82	20	1/0	FUNCTION
	HTSSOP-16 QFN-16 (PWP) (RSA)			
CLK	2	16	I	Clock. Input pulse train contains operating frequency and maximum duty cycle limit. This pin is a high impedance digital input capable of accepting 3.3-V logic level signals up to 2 MHz. There is an internal Schmitt trigger comparator which isolates the internal circuitry from any external noise.
CLF	7	5	0	Current limit flag. When the CS level is greater than the ILIM voltage minus 25 mV, the output driver is forced low and the current limit flag (CLF) is set high. The CLF signal is latched high until the device receives the next rising edge on the CLK pin. This signal is also used for the start-up handshaking between the Digital controller and the analog controller
ISET	4	2	I	Pin for programming the current used to set the amount of slope compensation in Peak-Current Mode control or to set the internal capacitor charging in voltage mode control.
3V3	3	1	0	Regulated 3.3-V rail. The onboard linear voltage regulator is capable of sourcing up to 10 mA of current. Place 0.22 μF of ceramic capacitance from this pin to analog ground.
AGND	5	3	-	Analog ground return
ILIM	8	6	I	Current limit threshold set pin. The current limit threshold can be set to any value between 0.25 V and 1.0 V. The default value while open is 0.5 V.
CTRL	6	4	I	Input for the error feedback voltage from the external error amplifier. This input is multiplied by 0.5 and routed to the negative input of the PWM comparator
NC	1, 15, 16	7, 14, 15	-	No connection.
CS	9	8	I	Current sense pin. Fast current limit comparator connected to the CS pin is used to protect the power stage by implementing cycle-by-cycle current limiting.
PGND	10	9	-	Power ground return. This pin should be connected close to the source of the power MOSFET.
OUT2	11	10	0	The high-current TrueDrive™ driver output.
OUT1	12	11	0	The high-current TrueDrive™ driver output.

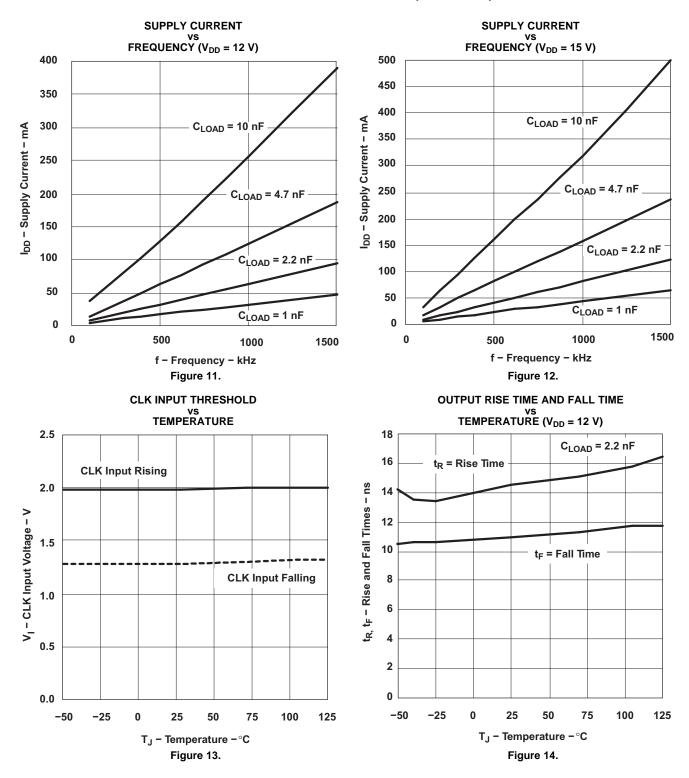
UCD8220

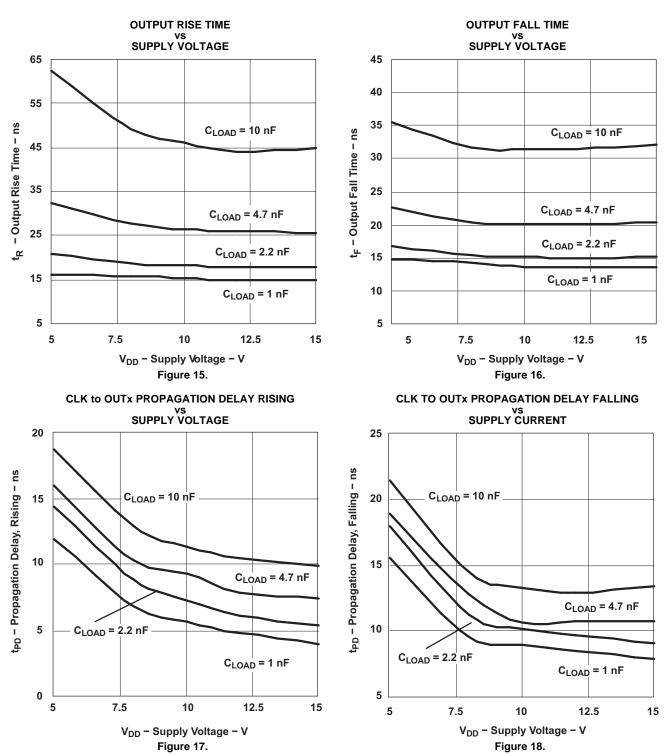
SLUS652D-MARCH 2005-REVISED OCTOBER 2006



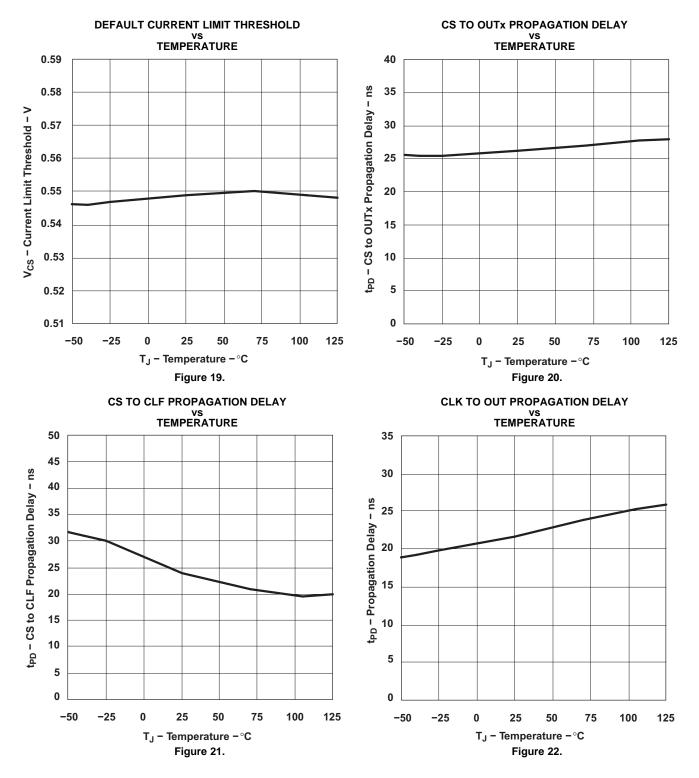
	PIN NUMBER						
PIN NAME UCD822		UCD8220		UCD8220		FUNCTION	
	HTSSOP-16 (PWP)	QFN-16 (RSA)	I/O				
PVDD	13	12		Supply pin provides power for the output drivers. It is not connected internally to the VDD supply rail. The bypass capacitor for this pin should be returned to PGND.			
VDD	14	13	I	Supply input pin to power the control circuitry. Bypass the pin with at least 4.7 μF of capacitance, returned to AGND.			
VIN	-	-	I	Input to the internal start-up circuitry rated to 110 V. This pin connects directly to the input power rail.			

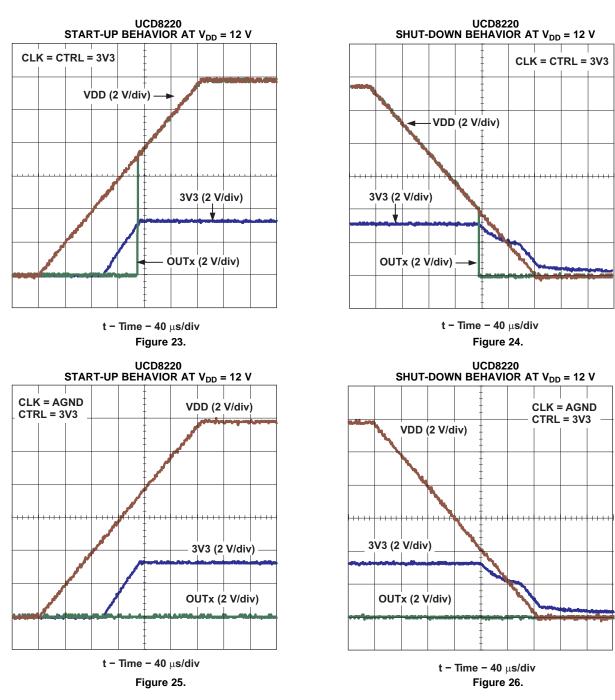
TYPICAL CHARACTERISTICS

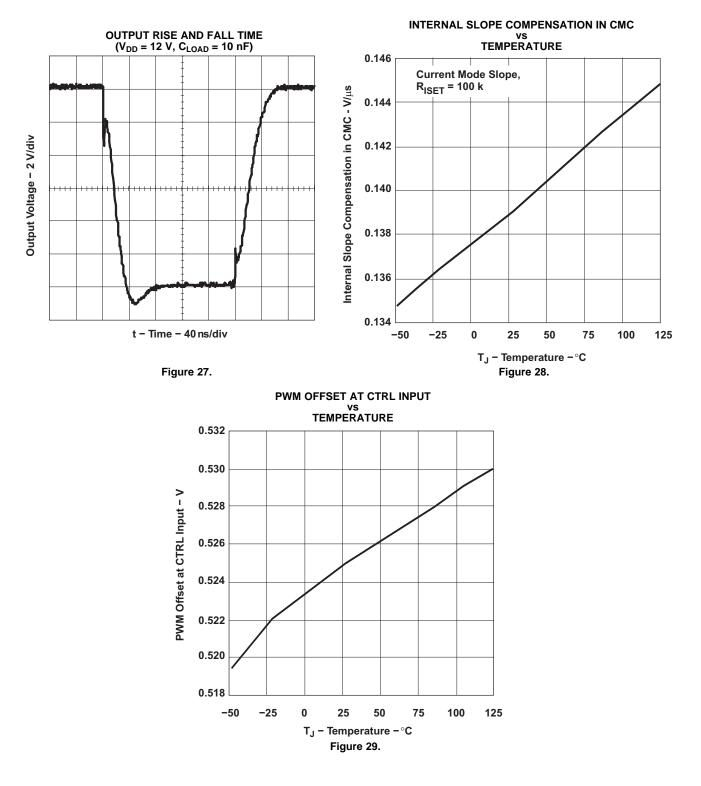




TYPICAL CHARACTERISTICS (continued)


Submit Documentation Feedback





APPLICATION INFORMATION

Introduction

The UCD8220 is a digitally managed analog PWM controller configured with push-pull drive logic.

In systems using the UCD8220 device, the PWM feedback loop is closed using the traditional analog methods, but the UCD8220 includes circuitry to interpret a time-domain digital pulse train from a digital controller. The pulse train contains the operating frequency and maximum duty cycle limit and hence controls the power supply operation. This eases implementing a converter with high-level control features without the added complexity or digital PWM resolution limitations encountered when closing the voltage control loop in the discrete time domain.

The UCD8220 can be configured for either peak current mode or voltage mode control. It provides a programmable current limit function and a digital output current limit flag which can be monitored by the host controller. For fast switching speeds, the output stages use the TrueDrive[™] output architecture, which delivers rated current of 4 A into the gate of a MOSFET during the Miller plateau region of the switching transition. Finally they also include a 3.3-V, 10-mA linear regulator to provide power for the digital controller.

The UCD8220 includes circuitry and features to ease implementing a converter that is managed by a microcontroller or a digital signal processor. Digitally managed power supplies provide software programmability and monitoring capability of a power supply's operation including:

- Switching frequency
- Synchronization
- D_{MAX}
- V x S clamp
- Input UVLO start/stop voltage
- Input OVP start/stop voltage
- Soft-start profile
- Current limit operation
- Shutdown
- Temperature shutdown

CLK Input Time-Domain Digital Pulse Train

While the loop is closed in the analog domain, the UCD8220 is managed by a time-domain digital pulse train from a digital controller. The pulse train, shown as CLK in Figure 30, contains the operating frequency and maximum duty cycle limit and hence controls the power supply operation as listed above.

The pulse train uses a Texas Instruments communication protocol which is a proprietary communication system that provides handles for control of the power supply operation through software programming. The rising edge of the CLK signal represents the switching frequency. Figure 30 depicts the operation of the UCD8220 in one of 5 modes. At the time when the internal signal REF OK is low, the UCD8220 is not ready to accept CLK inputs. Once the REF OK signal goes high, then the device is ready to process inputs. While the CLK input is low, the outputs are disabled and the CLK signal is used as an enable input. Once the Digital controller completes its initialization routine and verifies that all voltages are within their operating range, then it starts the soft-start procedure by slowly ramping up the duty cycle of the CLK signal, while maintaining the desired switching frequency. The CLK duty cycle continues to increase until it reaches steady-state where the analog control loop takes over and regulates the output voltage to the desired set point. During steady state, the duty cycle of the CLK pulse can be set using a volt second product calculation in order to protect the primary of the power transformer from saturation during transients.

When the power supply enters current limit, the outputs are quickly turned off, and the CLF signal is set high in order to notify the digital controller that the last power pulse was truncated because of an overcurrent event. The benefit of this technique is in the flexibility it offers.

The software is now in charge of the response to overcurrent events. In typical analog designs, the power supply response to overcurrent is hardwired in the silicon. With this method, the user can configure the response differently for different applications. For example, the software can be configured to latch-off the power supply in response the first overcurrent event, or to allow a fixed number of current limit events, so that the supply is capable of starting up into a capacitive load. The user can also configure the supply to enter into hiccup mode immediately or after a certain number of current limit events. As described later in this data sheet, the current limit threshold can be varied in time to create unique current limit profiles. For example, the current limit set point can be set high for a predefined number of cycles to blow a manual fuse, and can be reduced down to protect the system in the event of a faulty fuse.

Copyright © 2005–2006, Texas Instruments Incorporated

UCD8220

SLUS652D-MARCH 2005-REVISED OCTOBER 2006

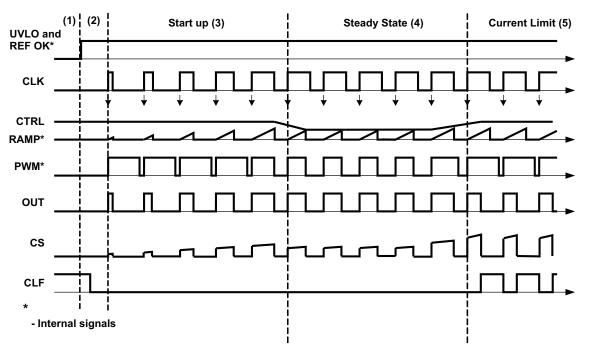
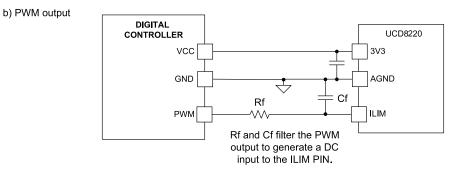
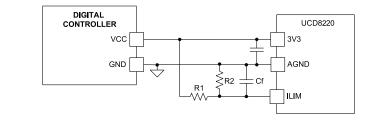
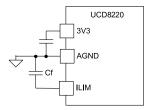


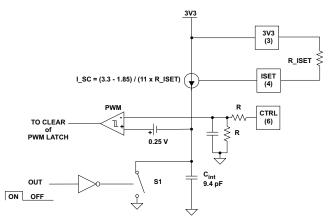
Figure 30. UCD8220 Timing and Circuit Operation Diagram


Current Sensing and Protection



TEXAS TRUMENTS www.ti.com


	ILIM SETPOINT				
	[Volts]	GPIO3	GPIO2	GPIO1	GPIO4
ILIM1	0.143	0	0	1	0
ILIM2	0.287	0	1	0	0
ILIM3	0.43	0	1	1	0
ILIM0	0.5	OPEN	OPEN	OPEN	OPEN
ILIM4	0.574	1	0	0	0
ILIM5	0.717	1	0	1	0
ILIM6	0.861	1	1	0	0
ILIM7	1.004	1	1	1	0


d) internal set point

c) Resistor divider

Selecting the ISET Resistor for Voltage Mode Control

Figure 32. UCD8220 Configured in Voltage Mode Control with an Internal Timing Capacitor

When the ISET resistor is configured as shown in Figure 32 with the ISET resistor connected between the ISET pin and the 3V3 pin, the device is set-up for voltage mode control. For purposes of voltage loop compensation the, voltage ramp is 1.4 V from the valley to the peak. See Equation 1 for selecting the proper resistance for a desired clock frequency.

$$R_ISET = \frac{(3.3 - 1.85) \times 10^{12}}{11 \times 1.4 \times \text{ fclk } \times 9.4} \Omega$$
(1)

Where:

fclk = Desired Clock Frequency in Hz.

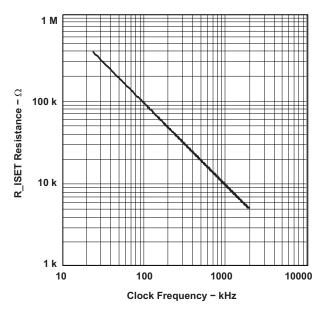
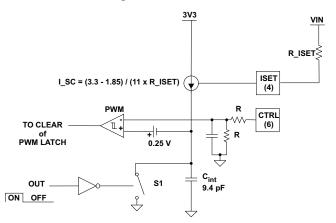



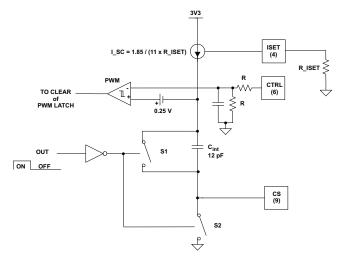
Figure 33. ISET Resistance vs Clock Frequency

Figure 33 shows the nominal value of resistance to use for a desired clock frequency. Note that for the UCD8220, which has two outputs controlled by Push-Pull logic, the output ripple frequency is equal to the clock frequency; and each output switches at half the clock frequency.

Selecting the ISET Resistor for Voltage Mode Control with Voltage Feed forward

Figure 34. UCD8220 Configured in Voltage Mode Control with Voltage Feed Forward

When the ISET resistor is configured as shown in Figure 34 with the ISET resistor connected between the ISET pin and the input voltage, VIN, the device is configured for voltage mode control with voltage feed forward. For the purposes of voltage loop compensation, the voltage ramp is 1.4 x Vin/Vin_max Volts from the valley to the peak. See Equation 2 for selecting the proper resistance for a desired clock frequency and input voltage range.


$$R_ISET = \frac{(Vin_max - 1.85) \times 10^{12}}{11 \times 1.4 \times fclk \times 9.4} \Omega$$
(2)

Where:

fclk = Desired Clock Frequency in Hz.

For a general discussion of the benefits of Voltage Mode Control with Voltage feed forward, see Reference [5].

Selecting the ISET Resistor for Peak Current Mode Control with Internal Slope Compensation

Figure 35. UCCD8220 Configured in Peak Current Control with Internal Slope Compensation

When the ISET resistor is configured as shown in Figure 35 with the ISET resistor connected between the ISET pin and AGND, the device is configured for peak current mode control with internal slope compensation. The voltage at the ISET pin is 1.85 volts so the internal slope compensation current, I_SC, being fed into the internal slope compensation capacitor is equal to 1.85 / (11x R_ISET). The voltage slope at the PWM comparator input which is generated by this current is equal to:

SLOPE =
$$\frac{1.85 \times 10^6}{11 \times R_{ISET} \times 12} V/\mu s$$
 (3)

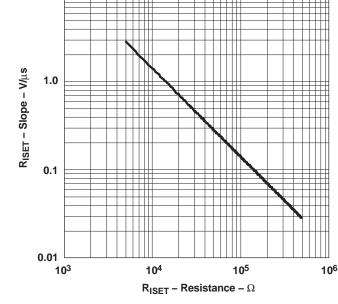


Figure 36. Slope vs RISET Resistance

The amount of slope compensation required depends on the design of the power stage and the output specifications. A general rule is to add an up-slope equal to the down slope of the output inductor. Refer to References 6 and 7 for a more detailed discussion regarding slope compensation in peak current mode controlled pwer stages.

Handshaking

10.0

The UCD8220 has a built-in handshaking feature to facilitate efficient start-up of the digitally managed power supply. At start-up the CLF flag is held high until all the internal and external supply voltages of the UCD8220 is within its operating range. Once the supply voltages are within acceptable limits, the CLF goes low and the device processes the CLK signals. The digital controller should monitor the CFL flag at start-up and wait for the CLF flag to go LOW before sending CLK pulses to the UCD8K device.

Driver Output

The high-current output stage of the UCD8220 is capable of supplying 4-A peak current pulses and swings to both PVDD and PGND.

The drive output uses the Texas Instruments TrueDrive[™] architecture, which delivers rated current into the gate of a MOSFET when it is most needed, during the Miller plateau region of the switching transition providing efficiency gains.

TrueDrive[™] consists of pull-up/pull-down circuits with bipolar and MOSFET transistors in parallel. The peak output current rating is the combined current from the bipolar and MOSFET transistors. This hybrid output stage also allows efficient current sourcing at low supply voltages.

Source/Sink Capabilities During Miller Plateau

Large power MOSFETs present a large load to the control circuitry. Proper drive is required for efficient, reliable operation. The UCD8220 driver has been optimized to provide maximum drive to a power MOSFET during the Miller plateau region of the switching transition. This interval occurs while the drain voltage is swinging between the voltage levels dictated by the power topology, requiring the charging/discharging of the drain-gate capacitance with current supplied or removed by the driver device. See Reference [2].

Drive Current and Power Requirements

The UCD8220 contains drivers which can deliver high current into a MOSFET gate for a period of several hundred nanoseconds. High-peak current is required to turn on a MOSFET. Then, to turn off a MOSFET, the driver is required to sink a similar amount of current to ground. This repeats at the operating frequency of the power device.

Reference [2] discusses the current required to drive a power MOSFET and other capacitive-input switching devices.

When a driver device is tested with a discrete, capacitive load it is a fairly simple matter to calculate the power that is required from the bias supply. The energy that must be transferred from the bias supply to charge the capacitor is given by:

$$\mathsf{E} = \frac{1}{2} \times \mathsf{CV}^2 \tag{4}$$

where C is the load capacitor and V is the bias voltage feeding the driver.

There is an equal amount of energy transferred to ground when the capacitor is discharged. This leads to a power loss given by the following:

$$P = CV^2 x f$$
 (5)

where f is the switching frequency.

This power is dissipated in the resistive elements of the circuit. Thus, with no external resistor between the driver and gate, this power is dissipated inside the driver. Half of the total power is dissipated when the capacitor is charged, and the other half is dissipated when the capacitor is discharged.

With V_{DD} = 12 V, C_{LOAD} = 2.2 nF, and f = 300 kHz, the power loss can be calculated as:

$$P = 2.2 \text{ nF x } 12^2 \text{ x } 300 \text{ kHz} = 0.095 \text{ W}$$
 (6)

With a 12-V supply, this would equate to a current of:

$$I = \frac{P}{V} = \frac{0.095 \text{ W}}{12 \text{ V}} = 7.9 \text{ mA}$$
 (7)

Thermal Information

The useful range of a driver is greatly affected by the drive power requirements of the load and the thermal characteristics of the device package. In order for a power driver to be useful over a particular temperature range the package must allow for the efficient removal of the heat produced while keeping the junction temperature within rated limits. The UCD8220 is available in PowerPADTM TSSOP and QFN/DFN packages to cover a range of application requirements. Both have an exposed pad to enhance thermal conductivity from the semiconductor junction.

As illustrated in Reference [3], the PowerPADTM packages offer a leadframe die pad that is exposed at the base of the package. This pad is soldered to the copper on the PC board (PCB) directly underneath the device package, reducing the θ_{JA} down to 37.47C/W. The PC board must be designed with thermal lands and thermal vias to complete the heat removal subsystem, as summarized in Reference [4].

Note that the PowerPAD[™] is not directly connected to any leads of the package. However, it is electrically and thermally connected to the substrate which is the ground of the device. The PowerPAD[™] should be connected to the quiet ground of the circuit.

Circuit Layout Recommendations

In a MOSFET driver operating at high frequency, it is critical to minimize stray inductance to minimize overshoot/undershoot and ringing. The low output impedance of the drivers produces waveforms with high di/dt. This tends to induce ringing in the parasitic inductances. It is advantageous to connect the driver device close to the MOSFETs. It is recommended that the PGND and the AGND pins be connected to the PowerPADTM of the package with a thin trace. It is critical to ensure that the voltage potential between these two pins does not exceed 0.3 V. The use of schottky diodes on the outputs to PGND and PVDD is recommended when driving gate transformers. See Reference 4 for a description of proper pad layout for the PowerPad[®] package.

REFERENCES

- 1. Power Supply Seminar SEM-1600 Topic 6: A Practical Introduction to Digital Power Supply Control, by Laszlo Balogh, Texas Instruments Literature No. SLUP224
- 2. Power Supply Seminar SEM-1400 Topic 2: Design And Application Guide For High Speed MOSFET Gate Drive Circuits, by Laszlo Balogh, Texas Instruments Literature No. SLUP133.
- 3. Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002
- 4. Application Brief, PowerPAD[™] Made Easy, Texas Instruments Literature No. SLMA004
- 5. Power Supply Seminar SEM-300 Topic 2, "Closing the Feedback Loop", by Lloyd Dixon Jr., Texas Instruments, (Literature Number SLUP068)
- 6. Application Note, "Practical Considerations in Current Mode Power Supplies", Texas Instruments Literature Number SLUA110.
- 7. U-97, Application Note, Modelling, Analysis and Compensation of the Current-Mode Converter, Texas Instruments Literature Number SLUA101.

RELATED PRODUCTS

PRODUCT	DESCRIPTION	FEATURES
UCD9501	Digital Power Controller for High Performance Multi-loop Applications	
MSP430F1232	Microcontroller	

REVISION HISTORY

DATE	REVISION	CHANGE DESCRIPTION
03/05	SLUS652	Initial release.
08/05	SLUS652A	Extensive changes throughout
09/05	SLUS652B	Extensive changes throughout

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
UCD8220PWP	ACTIVE	HTSSOP	PWP	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 105	UCD8220	Samples
UCD8220PWPG4	ACTIVE	HTSSOP	PWP	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 105	UCD8220	Samples
UCD8220PWPR	OBSOLETE	HTSSOP	PWP	16		TBD	Call TI	Call TI	-40 to 105	UCD8220	
UCD8220PWPRG4	OBSOLETE	HTSSOP	PWP	16		TBD	Call TI	Call TI	-40 to 105		
UCD8220RSA	PREVIEW	QFN	RSA	16		TBD	Call TI	Call TI	-40 to 105		
UCD8220RSAR	PREVIEW	QFN	RSA	16		TBD	Call TI	Call TI	-40 to 105		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

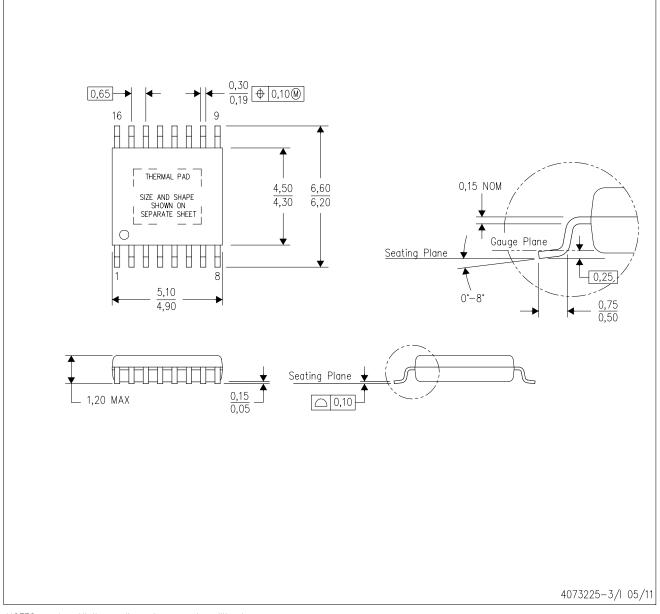
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

11-Apr-2013

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF UCD8220 :

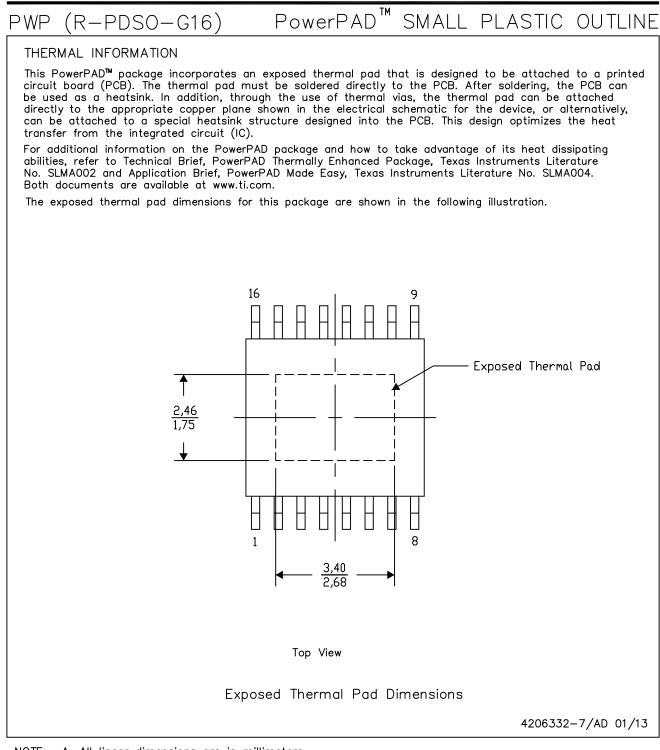

• Automotive: UCD8220-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PWP (R-PDSO-G16)

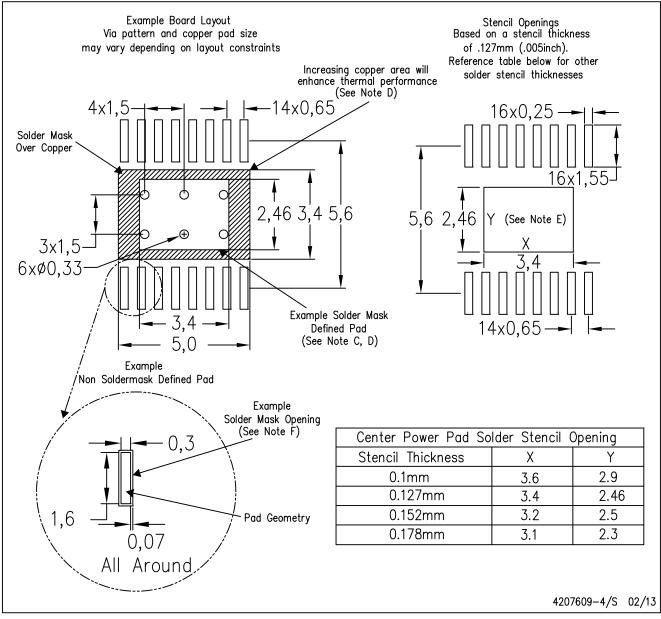
PowerPAD[™] PLASTIC SMALL OUTLINE



All linear dimensions are in millimeters. NOTES: Α.

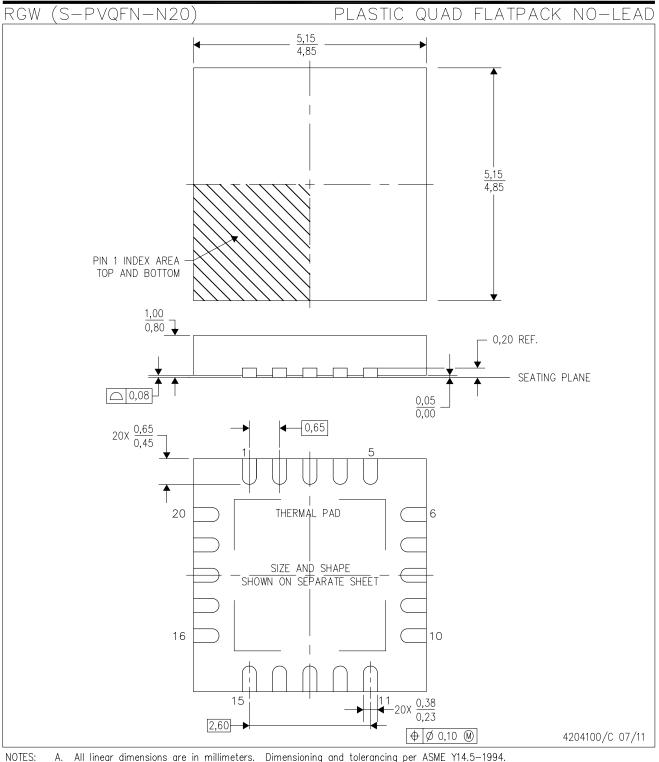
- Β. This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side. C.
- This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad D. Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com. E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.


NOTE: A. All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments

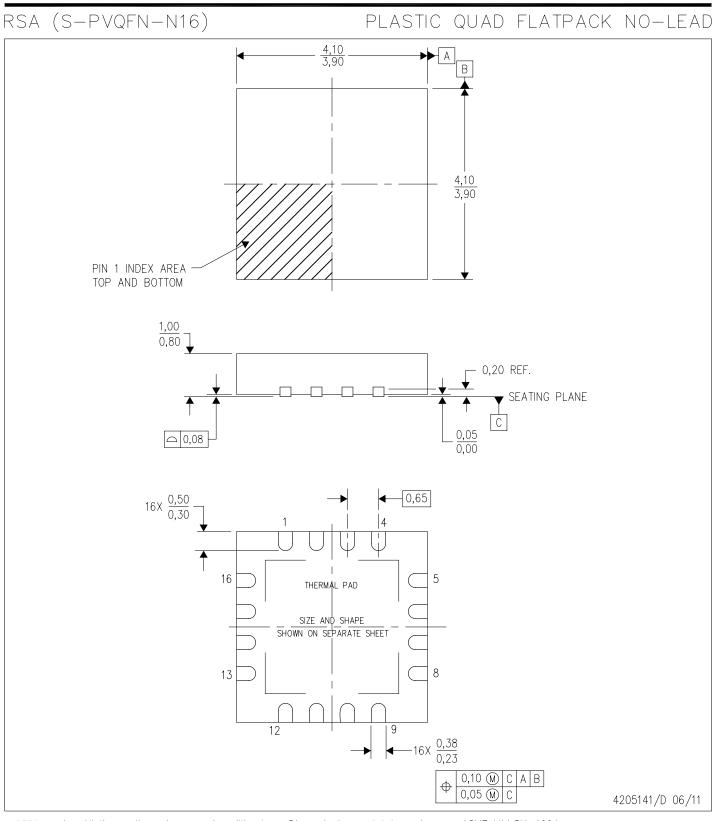
PWP (R-PDSO-G16)


PowerPAD[™] PLASTIC SMALL OUTLINE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>. Publication IPC-7351 is recommended for alternate designs.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
 - F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

TEXAS INSTRUMENTS www.ti.com

MECHANICAL DATA



A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.

- Β. This drawing is subject to change without notice.
- Quad Flat pack, No-leads (QFN) package configuration C.
- The package thermal pad must be soldered to the board for thermal and mechanical performance. D.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated