
PRECISION PROGRAMMABLE REFERENCE

Check for Samples: TL1431

FEATURES

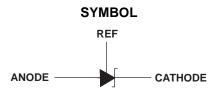
- 0.4% Initial Voltage Tolerance
- 0.2-Ω Typical Output Impedance
- Fast Turnon...500 ns

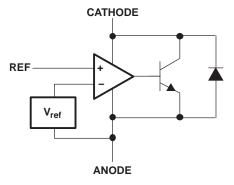
- Sink Current Capability...1 mA to 100 mA
- Low Reference Current (REF)
- Adjustable Output Voltage...V_{I(ref)} to 36 V

DESCRIPTION/ORDERING INFORMATION

The TL1431 is a precision programmable reference with specified thermal stability over automotive, commercial, and military temperature ranges. The output voltage can be set to any value between $V_{I(ref)}$ (approximately 2.5 V) and 36 V with two external resistors (see Figure 16). This device has a typical output impedance of 0.2 Ω . Active output circuitry provides a very sharp turnon characteristic, making the device an excellent replacement for Zener diodes and other types of references in applications such as onboard regulation, adjustable power supplies, and switching power supplies.

The TL1431C is characterized for operation over the commercial temperature range of 0°C to 70°C. The TL1431Q is characterized for operation over the full automotive temperature range of –40°C to 125°C. The TL1431M is characterized for operation over the full military temperature range of –55°C to 125°C.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


ORDERING INFORMATION(1)

T _A	PACI	KAGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	PowerFLEX™ – KTP	Reel of 3000	TL1431CKTPR	OBSOLETE	
	colc D	Tube of 75	TL1431CD	14240	
	SOIC – D	Reel of 2500	TL1431CDR	1431C	
0°C to 70°C		Bulk of 1000	TL1431CLP		
0°C to 70°C	TO-226 / TO-92 – LP	Reel of 2000	TL1431CLPR	TL1431C	
		Ammo of 2000	TL1431CLPME3		
	TCCOD DW	Tube of 150	TL1431CPW	T4 404	
	TSSOP – PW	Reel of 2000	TL1431CPWR	T1431	
	COIC D	Tube of 75	TL1431QD	TI 4424OD	
-40°C to 125°C	SOIC – D	Reel of 2500	TL1431QDR	TL1431QD	
-40°C to 125°C	TCCOD DW	Tube of 150	TL1431QPW	T4 404 O D) 14	
	TSSOP – PW	Reel of 2000	TL1431QPWR	T1431QPW	
55°C to 105°C	CDIP – JG	Tube of 50	TL1431MJG	TL1431MJG	
–55°C to 125°C	LCCC - FK	Tube of 55	TL1431MFK	TL1431MFK	

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

FUNCTIONAL BLOCK DIAGRAM

CATHODE Ω 008 **800** Ω 20 pF REF **150** Ω 3.28 $k\Omega$ 4 $k\Omega$ 10 $k\Omega$ 20 pF 7.2 $k\Omega$ 2.4 kΩ ≤

1 $\mathbf{k}\Omega$

EQUIVALENT SCHEMATIC

- All component values are nominal.
- Pin numbers shown are for the D package.

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

 800Ω

			MIN	MAX	UNIT
V _{KA}	Cathode voltage (2)		37	V	
I _{KA}	Continuous cathode current range	-100	150	mA	
I _{I(ref)}	Reference input current range	-0.05	10	mA	
θ_{JA}		D package		97	
	Package thermal impedance (3) (4)	LP package		140	°C/W
		PW package		149	
0	Package thermal impedance ⁽⁵⁾ (6)	FK package		5.61	°C/W
θ_{JC}	Package thermal impedance (** (**)	JG package		14.5	
TJ	Operating virtual junction temperature			150	°C
	Lead temperature	1,6 mm (1/16 in) from case for 10 s		260	°C
T _{stg}	Storage temperature range	-65	150	°C	

- Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- All voltage values are with respect to ANODE, unless otherwise noted.
- Maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- The package thermal impedance is calculated in accordance with JESD 51-7.
- Maximum power dissipation is a function of $T_{J(max)}$, θ_{JC} , and T_{C} . The maximum allowable power dissipation at any allowable case temperature is $P_{D} = (T_{J(max)} T_{C})/\theta_{JC}$. Operating at the absolute maximum T_{J} of 150°C can affect reliability.

Product Folder Links: TL1431

The package thermal impedance is calculated in accordance with MIL-STD-883.

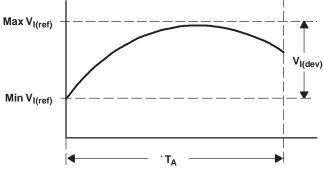
Recommended Operating Conditions

			MIN	MAX	UNIT
V_{KA}	Cathode voltage		$V_{I(ref)}$	36	V
I _{KA}	Cathode current		1	100	mA
		TL1431C	0	70	
T_A	Operating free-air temperature	TL1431Q	-40	125	°C
		TL1431M	- 55	125	

Electrical Characteristics

at specified free-air temperature, $I_{KA} = 10$ mA (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	- (1)	TEST	Т	L1431C		LINUT	
PARAMETER		TEST CONDITIONS	T _A ⁽¹⁾	CIRCUIT	MIN	TYP	MAX	UNIT	
.,	Defenses involved	M M	25°C	Figure 4	2490	2500	2510	\/	
V _{I(ref)}	Reference input voltage	$V_{KA} = V_{I(ref)}$	Full range	Figure 1	2480		2520	mV	
V _{I(dev)}	Deviation of reference input voltage over full temperature range (2)	$V_{KA} = V_{I(ref)}$	Full range	Figure 1		4	20	mV	
$\frac{\Delta V_{\text{I(ref)}}}{\Delta V_{\text{KA}}}$	Ratio of change in reference input voltage to the change in cathode voltage	$\Delta V_{KA} = 3 \text{ V to } 36 \text{ V}$	Full range	Figure 2		-1.1	-2	mV/V	
	Potoronoo input ourront	R1 = 10 kΩ, R2 = ∞	25°C	Figure 2		1.5	2.5		
I _{I(ref)}	Reference input current	K1 = 10 KΩ, K2 = ∞	Full range	Figure 2			3	μA	
I _{I(dev)}	Deviation of reference input current over full temperature range ⁽²⁾	R1 = 10 kΩ, R2 = ∞	Full range	Figure 2		0.2	1.2	μΑ	
I _{min}	Minimum cathode current for regulation	$V_{KA} = V_{I(ref)}$	25°C	Figure 1		0.45	1	mA	
	Off-state cathode current	V - 26 V V - 0	25°C	Figure 3		0.18	0.5	μA	
l _{off}	On-state cathode current	$V_{KA} = 36 \text{ V}, V_{I(ref)} = 0$	Full range	rigule 3			2	μΛ	
z _{KA}	Output impedance (3)	$V_{KA} = V_{I(ref)}$, f \leq 1 kHz, $I_{KA} = 1$ mA to 100 mA	25°C	Figure 1		0.2	0.4	Ω	


Full range is 0°C to 70°C for C-suffix devices.

The deviation parameters $V_{I(dev)}$ and $I_{I(dev)}$ are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage $\alpha_{VI(ref)}$ is defined as:

$$\left| \alpha_{\text{VI(ref)}} \right| \left(\frac{\text{ppm}}{^{\circ}\text{C}} \right) = \frac{\left(\frac{\text{VI(dev)}}{\text{VI(ref)} \text{ at } 25^{\circ}\text{C}} \right) \times 10^{6}}{\text{T}_{\text{A}}}$$

where:

 ΔT_A is the rated operating temperature range of the device.

 $\alpha_{VI(ref)}$ is positive or negative, depending on whether minimum $V_{I(ref)}$ or maximum $V_{I(ref)}$, respectively, occurs at the lower temperature. The output impedance is defined as: $|Z_{_{KA}}| = \frac{\Delta V_{_{KA}}}{\Delta I_{_{KA}}}$ When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is given by: $|z'| = \frac{\Delta V}{\Delta I}$, which is approximately equal to $|z_{KA}| \left(1 + \frac{R1}{R2}\right)$.

Electrical Characteristics

at specified free-air temperature, $I_{KA} = 10$ mA (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A (1)	TEST	TL1431Q			Т	UNIT			
	PARAMETER	TEST CONDITIONS	ΙΑ (''	CIRCUIT	MIN	TYP	MAX	MIN	TYP	MAX	ONII	
			25°C		2490	2500	2510	2475	2500	2540		
V _{I(ref)}	Reference input voltage	$V_{KA} = V_{I(ref)}$	Full range	Figure 1	2470		2530	2460		2550	mV	
$V_{I(dev)}$	Deviation of reference input voltage over full temperature range (2)	$V_{KA} = V_{I(ref)}$	Full range	Figure 1		17	55		17	55 ⁽³⁾	mV	
$\frac{\Delta V_{\text{l(ref)}}}{\Delta V_{\text{KA}}}$	Ratio of change in reference input voltage to the change in cathode voltage	$\Delta V_{KA} = 3 \text{ V to } 36 \text{ V}$	Full range	Figure 2		-1.1	-2		-1.1	-2	mV/V	
			25°C			1.5	2.5		1.5	2.5		
I _{I(ref)}	Reference input current	R1 = 10 kΩ, R2 = ∞	Full range	Figure 2			4			5	μA	
I _{I(dev)}	Deviation of reference input current over full temperature range (2)	R1 = 10 kΩ, R2 = ∞	Full range	Figure 2		0.5	2		0.5	3(3)	μA	
I _{min}	Minimum cathode current for regulation	$V_{KA} = V_{I(ref)}$	25°C	Figure 1		0.45	1		0.45	1	mA	
	Off-state cathode		25°C			0.18	0.5		0.18	0.5		
I _{off}	current	$V_{KA} = 36 \text{ V}, V_{I(ref)} = 0$	Full range	Figure 3			2			2	μΑ	
z _{KA}	Output impedance (4)	$V_{KA} = V_{I(ref)}$, $f \le 1 \text{ kHz}$, $I_{KA} = 1 \text{ mA to } 100 \text{ mA}$	25°C	Figure 1		0.2	0.4		0.2	0.4	Ω	

Full range is -40°C to 125°C for Q-suffix devices and -55°C to 125°C for M-suffix devices.

The deviation parameters $V_{I(dev)}$ and $I_{I(dev)}$ are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage $\alpha_{VI(ref)}$ is defined as:

$$\left| \alpha_{\text{vi(ref)}} \right| \left(\frac{\text{ppm}}{^{\circ}\text{C}} \right) = \frac{\left(\frac{\text{V}_{\text{I(dev)}}}{\text{V}_{\text{I(ref)}} \text{ at 25}^{\circ}\text{C}} \right) \times 10^{6}}{\text{T}_{\text{A}}}$$

 $\Delta T_{\mbox{\scriptsize A}}$ is the rated operating temperature range of the device.

 $\alpha_{VI(ref)}$ is positive or negative, depending on whether minimum $V_{I(ref)}$ or maximum $V_{I(ref)}$, respectively, occurs at the lower temperature. On products compliant to MIL-PRF-38535, this parameter is not production tested. The output impedance is defined as: $|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{KA}}$

When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is given by: , which is approximately equal to $|z_{\text{KA}}| \left(1 + \frac{R1}{R2}\right)$

PARAMETER MEASUREMENT INFORMATION

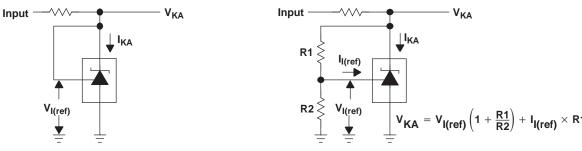


Figure 1. Test Circuit for $V_{(KA)} = V_{ref}$

Figure 2. Test Circuit for $V_{(KA)} > V_{ref}$

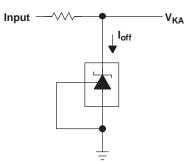


Figure 3. Test Circuit for Ioff

TYPICAL CHARACTERISTICS

Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

Table of Graphs

GRAPH	FIGURE
Reference voltage vs Free-air temperature	Figure 4
Reference current vs Fire-air temperature	Figure 5
Cathode current vs Cathode voltage	Figure 6, Figure 7
Off-state cathode current vs Free-air temperature	Figure 8
Ratio of delta reference voltage to delta cathode voltage vs Free-air temperature	Figure 9
Equivalent input-noise voltage vs Frequency	Figure 10
Equivalent input-noise voltage over a 10-second period	Figure 11
Small-signal voltage amplification vs Frequency	Figure 12
Reference impedance vs Frequency	Figure 13
Pulse response	Figure 14
Stability boundary conditions	Figure 15

Submit Documentation Feedback

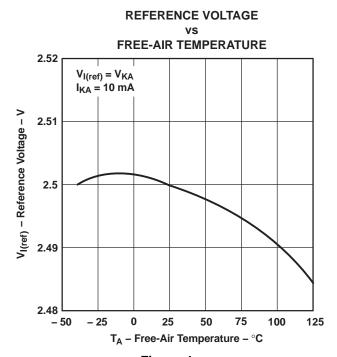
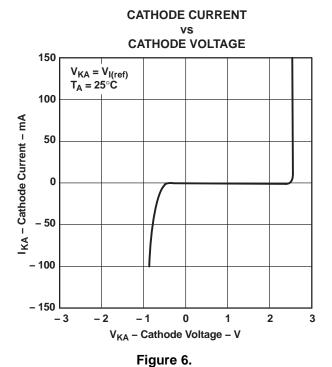



Figure 4.

REFERENCE CURRENT vs

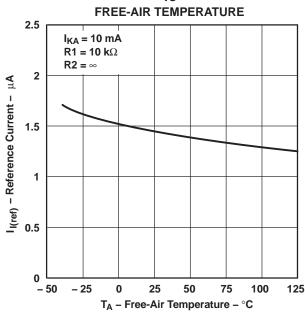
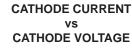



Figure 5.

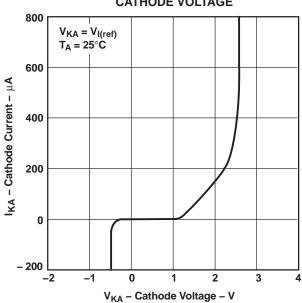
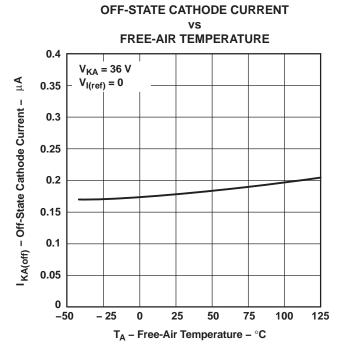



Figure 7.

RATIO OF DELTA REFERENCE VOLTAGE TO DELTA CATHODE VOLTAGE

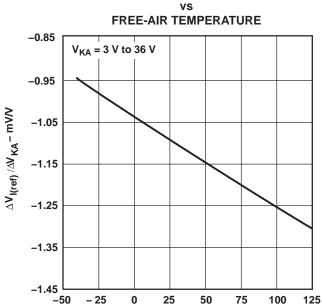
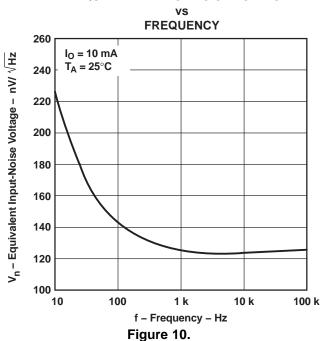
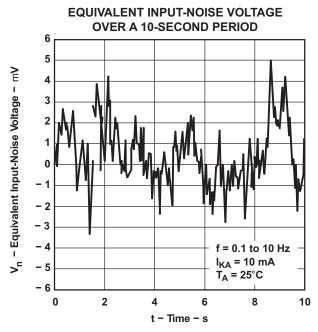
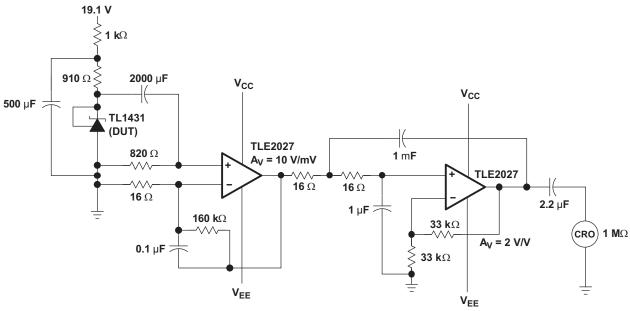



Figure 8.

Figure 9.

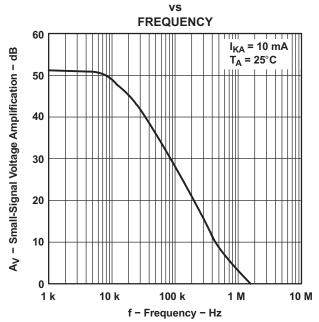
 T_A – Free-Air Temperature – $^{\circ}C$


EQUIVALENT INPUT-NOISE VOLTAGE



Submit Documentation Feedback

Copyright © 1991–2012, Texas Instruments Incorporated



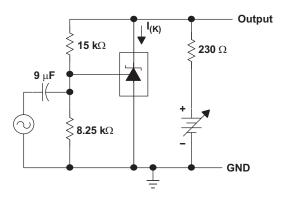
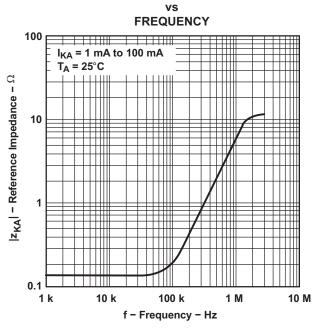
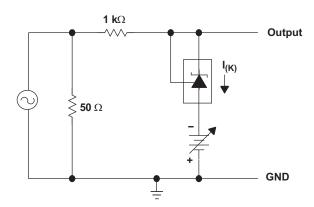

TEST CIRCUIT FOR 0.1-Hz TO 10-Hz EQUIVALENT INPUT-NOISE VOLTAGE

Figure 11.

SMALL-SIGNAL VOLTAGE AMPLIFICATION

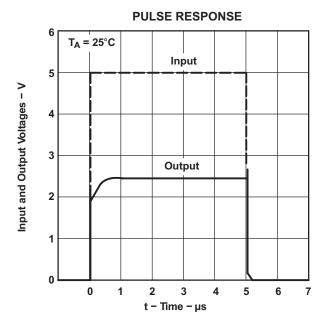




TEST CIRCUIT FOR VOLTAGE AMPLIFICATION

Figure 12.

REFERENCE IMPEDANCE



TEST CIRCUIT FOR REFERENCE IMPEDANCE

Figure 13.

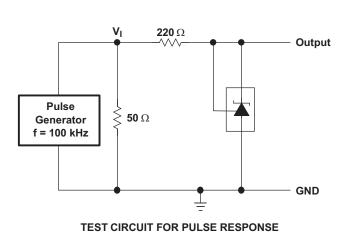
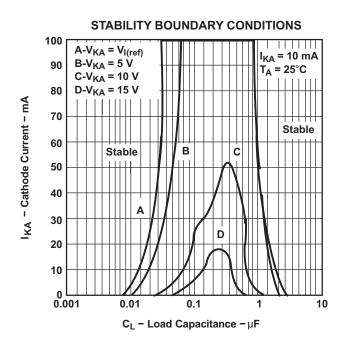
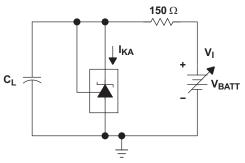
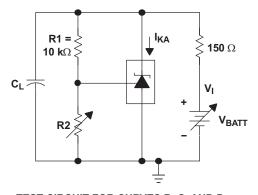





Figure 14.

TEST CIRCUIT FOR CURVE A

TEST CIRCUIT FOR CURVES B, C, AND D

A. The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2, and V+ are adjusted to establish the initial V_{KA} and I_{KA} conditions, with $C_L = 0$. V_{BATT} and C_L then are adjusted to determine the ranges of stability.

Figure 15.

Submit Documentation Feedback

APPLICATION INFORMATION

Table 1. Table of Application Circuits

APPLICATION	FIGURE
Shunt regulator	Figure 16
Single-supply comparator with temperature-compensated threshold	Figure 17
Precision high-current series regulator	Figure 18
Output control of a three-terminal fixed regulator	Figure 19
Higher-current shunt regulator	Figure 20
Crowbar	Figure 21
Precision 5-V, 1.5-A, 0.5% regulator	Figure 22
5-V precision regulator	Figure 23
PWM converter with 0.5% reference	Figure 24
Voltage monitor	Figure 25
Delay timer	Figure 26
Precision current limiter	Figure 27
Precision constant-current sink	Figure 28

A. R should provide cathode current ≥1 mA to the TL1431 at minimum V_(BATT).

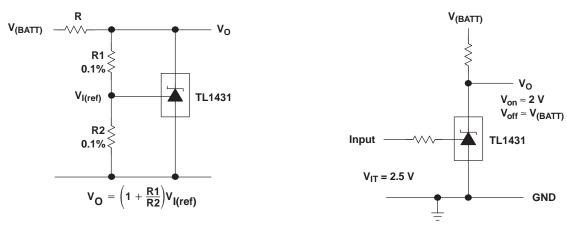
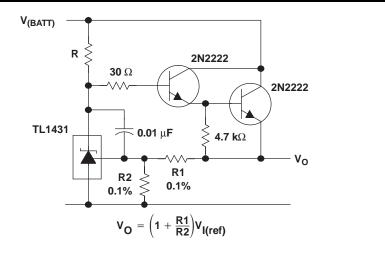



Figure 16. Shunt Regulator

Figure 17. Single-Supply Comparator With Temperature-Compensated Threshold

A. R should provide cathode current \geq 1 mA to the TL1431 at minimum $V_{(BATT)}$.

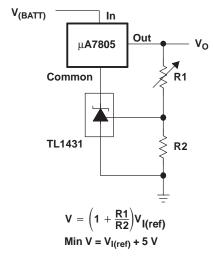


Figure 18. Precision High-Current Series Regulator

Figure 19. Output Control of a Three-Terminal Fixed Regulator

A. Refer to the stability boundary conditions in Figure 15 to determine allowable values for C.

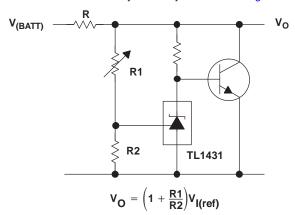


Figure 20. Higher-Current Shunt Regulator

A. R_b should provide cathode current ≥1 mA to the TL1431.

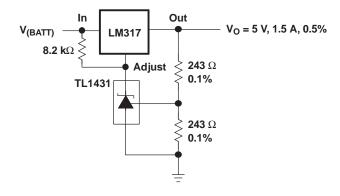


Figure 22. Precision 5-V, 1.5-A, 0.5% Regulator

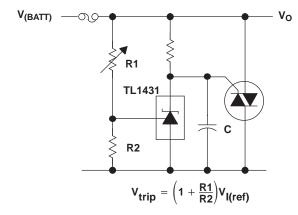


Figure 21. Crowbar

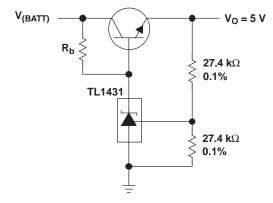


Figure 23. 5-V Precision Regulator

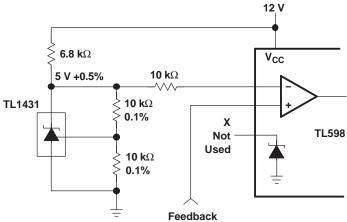


Figure 24. PWM Converter With 0.5% Reference

A. Select R3 and R4 to provide the desired LED intensity and cathode current ≥1 mA to the TL1431.

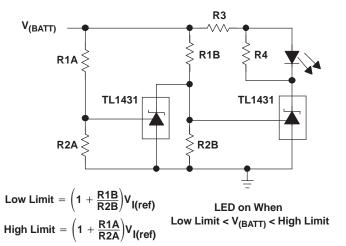


Figure 25. Voltage Monitor

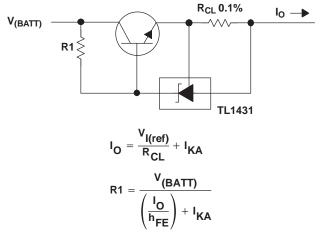


Figure 27. Precision Current Limiter

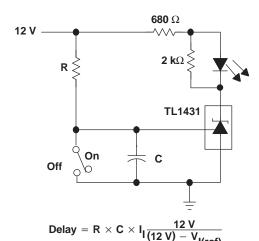


Figure 26. Delay Timer

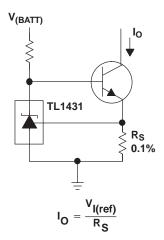


Figure 28. Precision Constant-Current Sink

REVISION HISTORY

CI	nanges from Revision October 2007 (N) to Revision M	Page
•	Added Ammo option to the LP package in the ORDERING INFORMATION table.	2

24-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Sample
5962-9962001Q2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	-55 to 125	5962- 9962001Q2A TL1431MFKB	Sample
5962-9962001QPA	ACTIVE	CDIP	JG	8	1	TBD	Call TI	Call TI	-55 to 125	9962001QPA TL1431M	Sample
TL1431CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1431C	Sample
TL1431CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1431C	Sample
TL1431CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1431C	Sample
TL1431CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1431C	Sample
TL1431CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1431C	Sample
TL1431CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1431C	Sample
TL1431CKTPR	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 70		
TL1431CLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 70	TL1431C	Sample
TL1431CLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 70	TL1431C	Sample
TL1431CLPM	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI	0 to 70		
TL1431CLPME3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 70	TL1431C	Sample
TL1431CLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 70	TL1431C	Sampl
TL1431CLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 70	TL1431C	Sampl
TL1431CPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T1431	Sampl
TL1431CPWE4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T1431	Sampl

www.ti.com 24-Jan-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
TL1431CPWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T1431	Samples
TL1431CPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T1431	Samples
TL1431CPWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T1431	Samples
TL1431CPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T1431	Samples
TL1431MFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	TL1431MFK	Samples
TL1431MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9962001Q2A TL1431MFKB	Samples
TL1431MJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	TL1431MJG	Samples
TL1431MJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	9962001QPA TL1431M	Samples
TL1431QD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	1431Q	Samples
TL1431QDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	1431Q	Samples
TL1431QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	1431Q	Samples
TL1431QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	1431Q	Samples
TL1431QLP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI	-40 to 125		
TL1431QLPR	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI	-40 to 125		
TL1431QPWR	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	-40 to 125	1431Q	
TL1431QPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	1431Q	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

i.com 24-Jan-2013

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TL1431, TL1431M:

Catalog: TL1431

Automotive: TL1431-Q1, TL1431-Q1

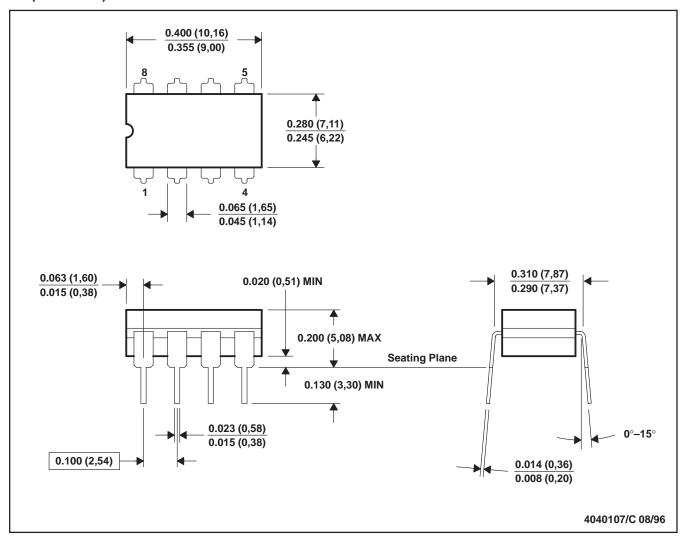
● Enhanced Product: TL1431-EP, TL1431-EP

Military: TL1431M

Space: TL1431-SP, TL1431-SP

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

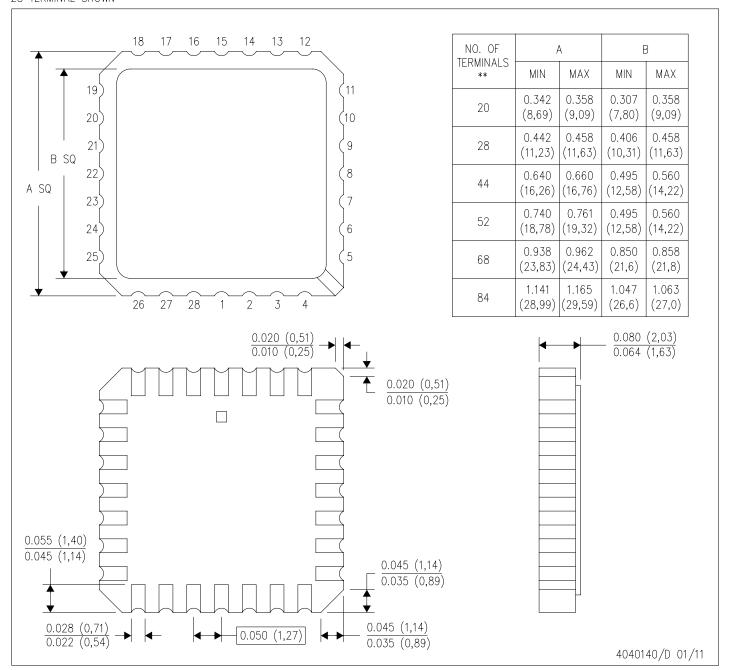


24-Jan-2013

- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

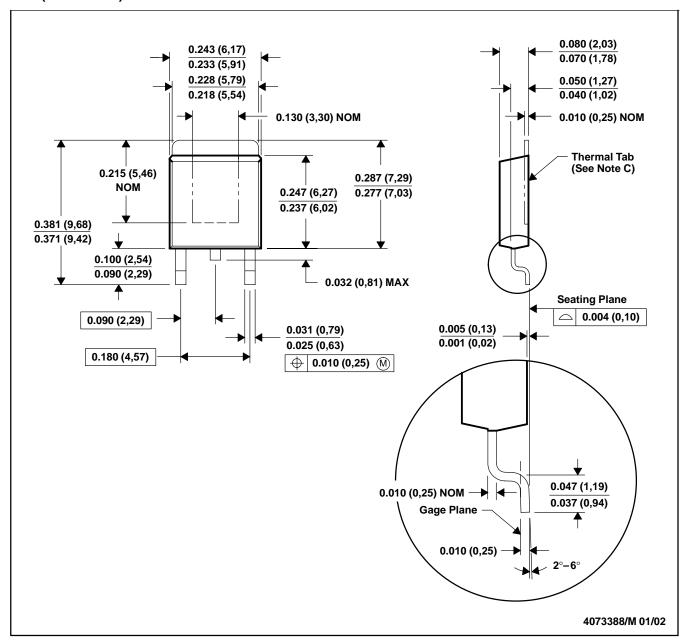

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

KTP (R-PSFM-G2)

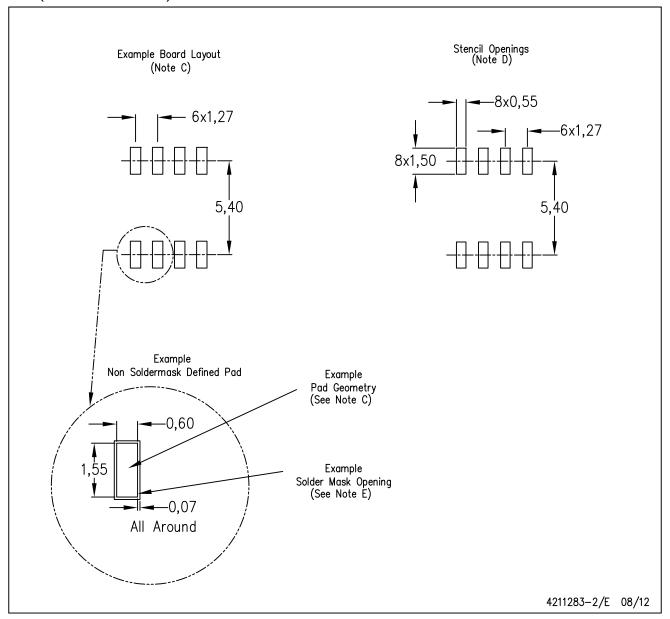
PowerFLEX™ PLASTIC FLANGE-MOUNT PACKAGE

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. The center lead is in electrical contact with the thermal tab.
 - D. Dimensions do not include mold protrusions, not to exceed 0.006 (0,15).
 - E. Falls within JEDEC TO-252 variation AC.

PowerFLEX is a trademark of Texas Instruments.

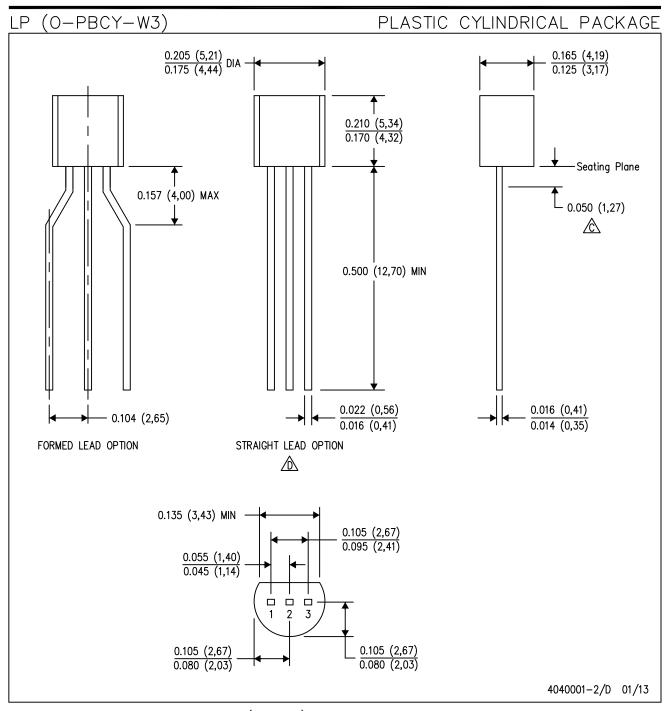
D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

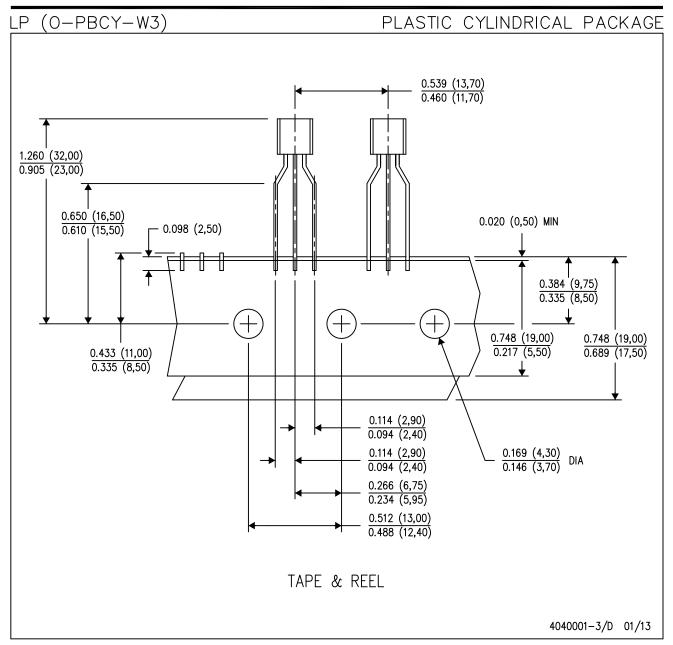
NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Lead dimensions are not controlled within this area.

Falls within JEDEC TO-226 Variation AA (TO-226 replaces TO-92).

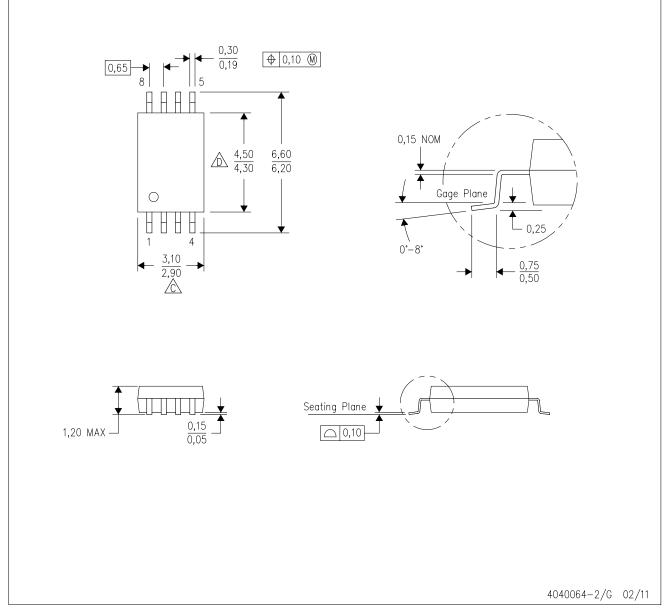
E. Shipping Method:


Straight lead option available in either bulk pack or tape & reel.

Formed lead option available in tape & reel or ammo pack.

Specific products can be offered in limited combinations of shipping mediums and lead options.

Consult product folder for more information on available options.



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Tape and Reel information for the Formed Lead Option package.

PW (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>