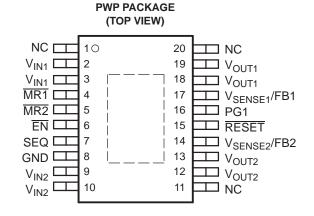


SLVS222I – DECEMBER 1999–REVISED AUGUST 2010

Dual-Output Low Dropout Voltage Regulators with Power-Up Sequencing for Split-Voltage DSP Systems

Check for Samples: TPS70145, TPS70148, TPS70151, TPS70158, TPS70102

FEATURES

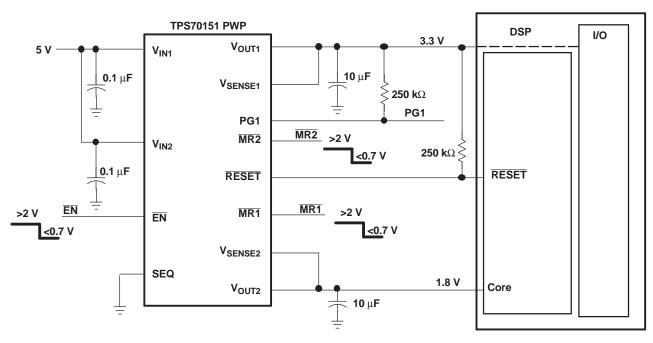

- Dual Output Voltages for Split-Supply Applications
- Selectable Power-Up Sequencing for DSP
 Applications
- Output Current Range of 500mA on Regulator 1 and 250mA on Regulator 2
- Fast Transient Response
- Voltage Options: 3.3V/2.5V, 3.3V/1.8V, 3.3V/1.5V, 3.3V/1.2V, and Dual Adjustable Outputs
- Open Drain Power-On Reset with 120ms Delay
- Open Drain Power Good for Regulator 1
- Ultra Low 190µA (typ) Quiescent Current
- 1µA Input Current During Standby
- Low Noise: 65µV_{RMS} Without Bypass Capacitor
- Quick Output Capacitor Discharge Feature
- Two Manual Reset Inputs
- 2% Accuracy Over Load and Temperature
- Undervoltage Lockout (UVLO) Feature
- 20-Pin PowerPAD™ TSSOP Package
- Thermal Shutdown Protection

DESCRIPTION

TPS701xx family devices are designed to provide a complete power management solution for the TMS320[™] DSP family, processor power, ASIC, FPGA, and digital applications where dual output voltage regulators are required. Easy programmability of the sequencing function makes the TPS701xx family ideal for any TMS320 DSP applications with power sequencing requirements. Differentiated features, such as accuracy, fast transient response, SVS supervisory circuit, manual reset inputs, and an enable function, provide a complete system solution.

The TPS701xx family of voltage regulators offer very low dropout voltage and dual outputs with power-up sequence control, which is designed primarily for DSP applications. These devices have extremely low noise output performance without using any added filter bypass capacitors and are designed to have a fast transient response and be stable with 10μ F low ESR capacitors.

These devices have fixed 3.3V/2.5V, 3.3V/1.8V, 3.3V/1.5V, 3.3V/1.2V, and adjustable/adjustable voltage options. Regulator 1 can support up to 500mA, and regulator 2 can support up to 250mA. Separate voltage inputs allow the designer to configure the source power.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerPAD, TMS320 are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

SLVS222I – DECEMBER 1999 – REVISED AUGUST 2010

www.ti.com

Because the PMOS device behaves as a low-value resistor, the dropout voltage is very low (typically 170mV on regulator 1) and is directly proportional to the output current. Additionally, since the PMOS pass element is a voltage-driven device, the quiescent current is very low and independent of output loading (maximum of 230μ A over the full range of output current). This LDO family also features a sleep mode; applying a high signal to EN (enable) shuts down both regulators, reducing the input current to 1μ A at $T_J = +25^{\circ}$ C.

The device is enabled when the \overline{EN} pin is connected to a low-level input voltage. The output voltages of the two regulators are sensed at the V_{SENSE1} and V_{SENSE2} pins, respectively.

The input signal at the SEQ pin controls the power-up sequence of the two regulators. When the device is enabled and the SEQ terminal is pulled high or left open, V_{OUT2} turns on first and V_{OUT1} remains off until V_{OUT2} reaches approximately 83% of its regulated output voltage. At that time V_{OUT1} is turned on. If V_{OUT2} is pulled below 83% (for example, an overload condition), V_{OUT1} is turned off. Pulling the SEQ terminal low reverses the power-up order and V_{OUT1} is turned on first. The SEQ pin is connected to an internal pull-up current source.

For each regulator, there is an internal discharge transistor to discharge the output capacitor when the regulator is turned off (disabled).

The PG1 pin reports the voltage conditions at V_{OUT1} , which can be used to implement an SVS for the circuitry supplied by regulator 1.

The TPS701xx features a RESET (SVS, POR, or Power-On Reset). RESET output initiates a reset in DSP systems and related digital applications in the event of an undervoltage condition. RESET indicates the status of V_{OUT2} and both manual reset pins (MR1 and MR2). When V_{OUT2} reaches 95% of its regulated voltage and MR1 and MR2 are in the logic high state, RESET goes to a high impedance state after a 120ms delay. RESET goes to the logic low state when the V_{OUT2} regulated output voltage is pulled below 95% (for example, an overload condition) of its regulated voltage. To monitor V_{OUT1} , the PG1 output pin can be connected to MR1 or MR2.

The device has an undervoltage lockout (UVLO) circuit that prevents the internal regulators from turning on until V_{IN1} reaches 2.5V.

SLVS222I - DECEMBER 1999-REVISED AUGUST 2010

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

	ORDERING INFORMATION ⁽¹⁾							
	VOLTA	GE (V) ⁽²⁾	PACKAGE-	SPECIFIED		TRANODORT		
PRODUCT	V _{OUT1}	V _{OUT2}	LEAD (DESIGNATOR)	TEMPERATURE RANGE (T _J)	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY		
TPS70102	Adiustable	Adjustshis		-40°C to +125°C	TPS70102PWP	Tube, 70		
19570102	Adjustable	Adjustable	HTSSOP-20 (PWP)	-40°C 10 +125°C	TPS70102PWPR	Tape and Reel, 2000		
TPS70145	0.0.1	4.0.1/		-40°C to +125°C	TPS70145PWP	Tube, 70		
19570145	3.3 V	1.2 V	HTSSOP-20 (PWP)	-40°C 10 +125°C	TPS70145PWPR	Tape and Reel, 2000		
TPS70148	2.2.1/	1.5 V	HTSSOP-20 (PWP)	-40°C to +125°C	TPS70148PWP	Tube, 70		
1F370140	3.3 V	1.5 V		-40 C 10 +125 C	TPS70148PWPR	Tape and Reel, 2000		
TPS70151	3.3 V	4.0.1/		-40°C to +125°C	TPS70151PWP	Tube, 70		
19570151	3.3 V	1.8 V	HTSSOP-20 (PWP)	-40°C 10 +125°C	TPS70151PWPR	Tape and Reel, 2000		
TPS70158	3.3 V	2.5 V	HTSSOP-20 (PWP)	-40°C to +125°C	TPS70158PWP	Tube, 70		
1F3/0156	3.3 V	2.3 V	птээог-20 (PWP)	-40 C 10 +125 C	TPS70158PWPR	Tape and Reel, 2000		

(1) For the most current package and ordering information see the Package Option Addendum located at the end of this document, or see the TI web site at www.ti.com.

(2) For fixed 1.20V operation, tie FB to OUT.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Over operating free-air temperature range (unless otherwise noted).

	TPS701xx	UNIT
Input voltage range: V _{IN1} , V _{IN2} ⁽²⁾	-0.3 to +7	V
Voltage range at EN	-0.3 to +7	V
Output voltage range (V _{OUT1} , V _{SENSE1})	5.5	V
Output voltage range (V _{OUT2} , V _{SENSE2})	5.5	V
Maximum RESET, PG1 voltage	7	V
Maximum MR1, MR2, and SEQ voltage	V _{IN1}	V
Peak output current	Internally limited	—
Continuous total power dissipation	See Thermal Information Table	—
Junction temperature range, T _J	-40 to +150	°C
Storage temperature range, T _{stg}	-65 to +150	°C
ESD rating, HBM	2	kV

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are tied to network ground.

SLVS222I-DECEMBER 1999-REVISED AUGUST 2010

EXAS

www.ti.com

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾ ⁽²⁾	TPS701xx	
		PWP (20 PINS)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	74.1	
θ_{JCtop}	Junction-to-case (top) thermal resistance	43.1	
θ_{JB}	Junction-to-board thermal resistance	19.7	°C/W
ΨJT	Junction-to-top characterization parameter	2.9	C/VV
Ψјв	Junction-to-board characterization parameter	17.3	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	1.4	

For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. (1) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator. (2)

RECOMMENDED OPERATING CONDITIONS

Over operating temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Input voltage, V _I ⁽¹⁾ (regulator 1 and 2)	2.7	6	V
Output current, I _O (regulator 1)	0	500	mA
Output current, I _O (regulator 2)	0	250	mA
Output voltage range (for adjustable option)	1.22	5.5	V
Operating junction temperature, T _J	-40	+125	°C

(1) To calculate the minimum input voltage for maximum output current, use the following equation: V_{I(min)} = V_{O(max)} + V_{DO(max load)}.

ELECTRICAL CHARACTERISTICS

Over recommended operating junction temperature range ($T_J = -40^{\circ}C$ to +125°C), V_{IN1} or $V_{IN2} = V_{OLIT(nom)} + 1V$, $I_O = 1$ mA, $\overline{\text{EN}} = 0\text{V}, \text{ C}_{\text{O}} = 33\mu\text{F}, \text{ (unless otherwise noted)}.$

PARAMETER		TEST	TEST CONDITIONS		TYP	MAX	UNIT		
		Reference voltage	2.7V < V _I < 6V, T _J = +25°C	FB connected to V_{O}		1.22			
			2.7V < V _I < 6V,	FB connected to V_O	1.196		1.244		
		1.2V Output	2.7V < V _I < 6V,	$T_J = +25^{\circ}C$		1.2			
Output Vo voltage ^{(1),}		2.7V < V _I < 6V,		1.176		1.224			
	1.5V Output	2.7V < V _I < 6V,	T _J = +25°C		1.5				
		2.7V < V _I < 6V,		1.47		1.53	V		
U	(2)	1.8V Output	2.7V < V _I < 6V,	T _J = +25°C		1.8			
		2.7V < V _I < 6V,		1.764		1.836			
		2.5V Output	2.7V < V _I < 6V,	T _J = +25°C		2.5			
			2.7V < V _I < 6V,		2.45		2.55		
		3.3V Output	2.7V < V _I < 6V,	T _J = +25°C		3.3			
			2.7V < V _I < 6V,		3.234		3.366		
Quiesc	ent current (GND	current) for	(2)	T _J = +25°C		190			
regulator 1 and regulator 2, $\overline{EN} = 0V^{(1)}$		(2)				230	μA		
Output voltage line regulation ($\Delta V_O/V_O$)		$V_{\rm O} + 1V < V_{\rm I} \le 6V,$	$T_{\rm J}$ = +25°C ⁽¹⁾		0.01%				
for regu	for regulator 1 and regulator 2 ⁽³⁾		$V_0 + 1V < V_1 \le 6V$	(1)			0.1%	V	
Load re	egulation for V _{OUT}	$_{1}$ and V _{OUT2}	T _J = +25°C	(2)		1		mV	

Minimum input operating voltage is 2... $I_{O} = 1$ mA to 250mA for Regulator 1 and 1mA to 125mA for Regulator 2. $EV_{V} = 2.7V$: Line Reg. (mV) = (%/V) × V_{O} $\frac{(V_{Imax} - 2.7V)}{100} \times 1000$ $(V_{Imax} - (V_{O} + 1V))$ Minimum input operating voltage is 2.7V or V_{O(tvp)} + 1V, whichever is greater. Maximum input voltage = 6V, minimum output (1)

(2)

(3) If
$$V_O < 1.8V$$
 then $V_{Imax} = 6V$, $V_{Imin} = 2.7V$:

If
$$V_0 > 2.5V$$
 then $V_{\text{Imax}} = 6V$, $V_{\text{Imin}} = V_0 + 1V$:
Line Reg. (mV) = $(\%/V) \times V_0 \frac{(\sqrt{V_{\text{Imax}} - (\sqrt{V_0 + 1V})})}{100} \times 1000$

4

ELECTRICAL CHARACTERISTICS (continued)

Over recommended operating junction temperature range ($T_J = -40^{\circ}C$ to $+125^{\circ}C$), V_{IN1} or $V_{IN2} = V_{OUT(nom)} + 1V$, $I_O = 1mA$, <u>EN</u> = 0V, $C_O = 33\mu$ F, (unless otherwise noted).

	PARAMETE	R	TEST C	CONDITIONS	MIN	TYP	MAX	UNIT
V _n	Output noise	Regulator 1	BW 300Hz to 50kHz,	C _O = 33μF, T _J = +25°C		65		μV _{RMS}
۷n	voltage	Regulator 2	BW SOULZ to SOR IZ,	$C_0 = 35\mu r$, $r_j = +25 C$		65		μvrms
Output current limit		Regulator 1				1.6	1.9	^
Output cu	irrent limit	Regulator 2	V _{OUT} = 0V			0.750	1	A
Thermal s	hermal shutdown junction temperature					+150		°C
		Dogulator 1	$\overline{EN} = V_{I},$	$T_J = +25^{\circ}C$			1	
h	Standby	Regulator 1	$\overline{EN} = V_I$				3	μA
(standby)			$\overline{EN} = V_{I},$	$T_J = +25^{\circ}C$			1	
		Regulator 2	EN = V _I				3	μA
PSRR	Power-supply rejection	ripple	$f = 1 kHz, C_O = 33 \mu F,$	$T_{J} = +25^{\circ}C^{(1)}$		60		dB
RESET T	erminal							
Minimum	input voltage fo	r valid RESET	$I_{RESET} = 300 \mu A$,	$V_{(RESET)} \le 0.8V$		1.0	1.3	V
Trip thres	hold voltage		V _O decreasing		92%	95%	98%	V _{OUT}
Hysteresi	s voltage		Measured at V _O			0.5%		V _{OUT}
t (RESET)			RESET pulse duration		80	120	160	ms
tr (RESET)			Rising edge deglitch			30		μS
Output lo	w voltage		V _I = 3.5V,	I _{O(RESET)} = 1mA		0.15	0.4	V
Leakage	current		$V_{(RESET)} = 6V$				1	μA
PG1 Terr	ninal							
Minimum	input voltage fo	r valid PG1	I _(PG1) = 300μA,	V _(PG1) ≤ 0.8V		1.0	1.3	V
	hold voltage		V _O decreasing		92%	95%	98%	V _{OUT}
Hysteresi	-		Measured at V _O			0.5%		V _{OUT}
t _{r(PG1)}			Rising edge deglitch			30		μS
	w voltage		$V_1 = 2.7V$,	I _{O(PG1)} = 1mA		0.15	0.4	V
Leakage	-		$V_{(PG1)} = 6V$	-O(FGT)			1	μA
EN Term							· ·	po 1
	I EN input volta	ne			2			V
-	EN input voltag	-			-		0.7	V
Input curr		,0			-1		1	μA
	lge deglitch		Measured at V _O			140		•
SEQ Teri			Measured at VO			140		μS
		200			2			V
	I SEQ input volt SEQ input volt				2		0.7	V
		-				6	0.7	
	up current sour	6				0		μA
	R2 Terminals							17
-	l input voltage				2		~ -	V
	input voltage						0.7	V
	urrent source					6		μA
input thre	<pre>/ comparator: Po shold voltage of</pre>				80% V _O	83% V _O	86% V _O	V
Comparat	or comparator: H	vsteresis				0.5% V _O		mV
	comparator: Fa		V _{SENSE_2} decreasing below	ow threshold		140		μs
			2ms pulse width		1			

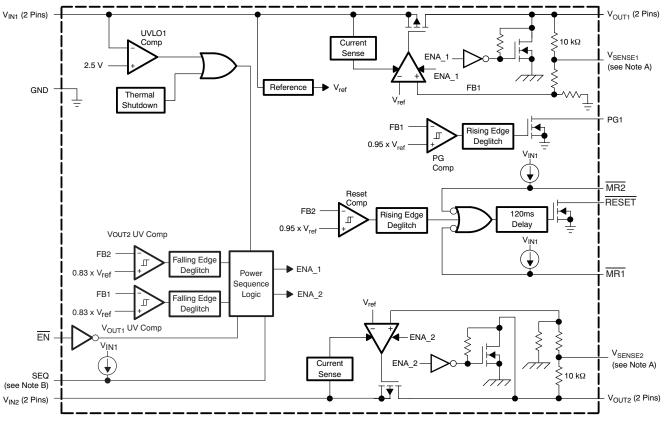
SLVS222I - DECEMBER 1999-REVISED AUGUST 2010

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

Over recommended operating junction temperature range ($T_J = -40^{\circ}C$ to $+125^{\circ}C$), V_{IN1} or $V_{IN2} = V_{OUT(nom)} + 1V$, $I_O = 1mA$, EN = 0V, $C_O = 33\mu$ F, (unless otherwise noted).

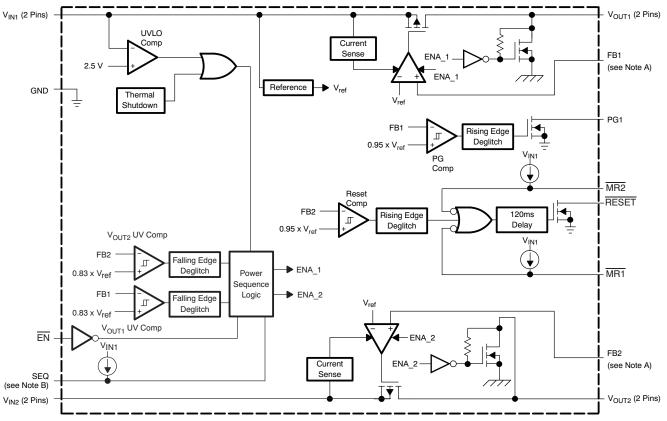
PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
Discharge transistor current	V _{OUT2} = 1.5V			7.5		mA
V _{OUT1} Terminal						
V_{OUT1} UV comparator: Positive-going input threshold voltage of V_{OUT1} UV comparator			80% V _O	83% V _O	86% V _O	V
V _{OUT1} UV comparator: Hysteresis				0.5% V _O		mV
V _{OUT1} UV comparator: Falling edge deglitch	V _{SENSE_1} decreasing below	threshold		140		μS
V _{OUT1} Terminal, <i>continued</i>						
Dropout voltage ⁽⁴⁾	I _O = 500mA, T _J = +25°C	V _{IN1} = 3.2V		170		mV
Dropout voltage ⁽⁴⁾	I _O = 500mA,	V _{IN1} = 3.2V			275	mV
Peak output current ⁽⁴⁾	2ms pulse width			750		mA
Discharge transistor current	V _{OUT1} = 1.5V			7.5		mA
V _{IN1} UVLO threshold			2.4		2.65	V
FB Terminal						
Input current: TPS70102	FB = 1.8V			1		μA


(4) Input voltage (V_{IN1} or V_{IN2}) = V_{O(typ)} - 100mV. For 1.5V, 1.8V and 2.5V regulators, the dropout voltage is limited by input voltage range. The 3.3V regulator input is set to 3.2V to perform this test.

SLVS222I – DECEMBER 1999 – REVISED AUGUST 2010

DEVICE INFORMATION

Fixed Voltage Version

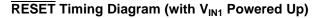


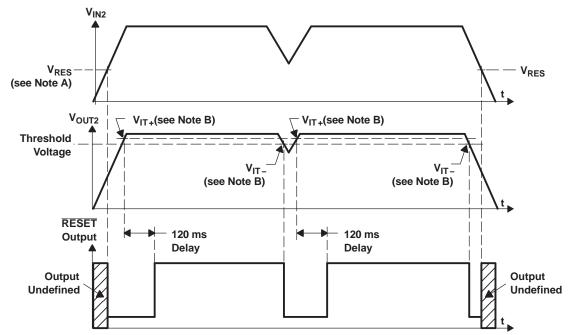
A. For most applications, V_{SENSE1} and V_{SENSE2} should be externally connected to V_{OUT} as close as possible to the device. For other implementations, refer to SENSE terminal connection discussion in the *Application Information* section.

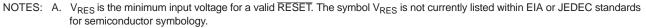
B. If the SEQ terminal is floating at the input, V_{OUT2} powers up first.

SLVS222I – DECEMBER 1999 – REVISED AUGUST 2010

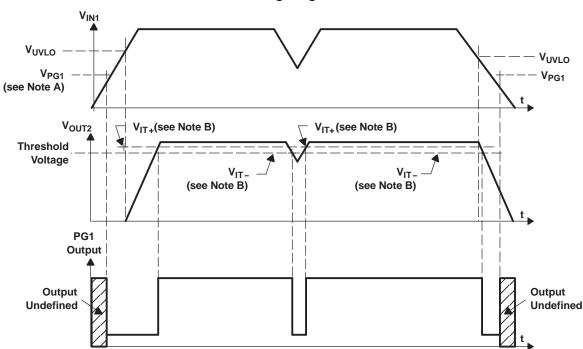
www.ti.com


Adjustable Voltage Version


A. For most applications, FB1 and FB2 should be externally connected to resistor dividers as close as possible to the device. For other implementations, refer to FB terminals connection discussion in the *Application Information* section.



B. If the SEQ terminal is floating at the input, V_{OUT2} powers up first



B. V_{IT} –Trip voltage is typically 5% lower than the output voltage (95% V_O) V_{IT-} to V_{IT+} is the hysteresis voltage.

PG1 Timing Diagram

- NOTES: A. V_{PG1} is the minimum input voltage for a valid PG1. The symbol V_{PG1} is not currently listed within EIA or JEDEC standards for semiconductor symbology.
 - B. V_{IT} –Trip voltage is typically 5% lower than the output voltage (95%V_O) V_{IT-} to V_{IT+} is the hysteresis voltage.

SLVS222I – DECEMBER 1999 – REVISED AUGUST 2010

www.ti.com

Table 1. TERMINAL FUNCTIONS

TERMINAL			DECODIDITION
NAME	NO.		DESCRIPTION
EN	6	I	Active low enable
GND	8	—	Ground
MR1	4	I	Manual reset input 1, active low, pulled up internally
MR2	5	I	Manual reset input 2, active low, pulled up internally
NC	1, 11, 20	—	No connection
PG1	16	0	Open drain output, low when V_{OUT1} voltage is less than 95% of the nominal regulated voltage
RESET	15	0	Open drain output, SVS (power-on reset) signal, active low
SEQ	7	I	Power-up sequence control: SEQ = High, V_{OUT2} powers up first; SEQ = Low, V_{OUT1} powers up first, SEQ terminal pulled up internally.
V _{IN1}	2, 3	I	Input voltage of regulator 1
V _{IN2}	9, 10	I	Input voltage of regulator 2
V _{OUT1}	18, 19	0	Output voltage of regulator 1
V _{OUT2}	12, 13	0	Output voltage of regulator 2
V _{SENSE2} /FB2	14	I	Regulator 2 output voltage sense/regulator 2 feedback for adjustable
V _{SENSE1} /FB1	17	I	Regulator 1 output voltage sense/regulator 1 feedback for adjustable

Detailed Description

The TPS701xx low dropout regulator family provides dual regulated output voltages for DSP applications that require high-performance power management solutions. These devices provide fast transient response and high accuracy with small output capacitors, while drawing low quiescent current. Programmable sequencing provides a power solution for DSPs without any external component requirements. This architecture reduces the component cost and board space while increasing total system reliability. The TPS701xx family has an enable feature that puts the device in sleep mode reducing the input currents to less than 3μ A. Other features are integrated SVS (Power-On Reset, RESET) and Power Good (PG1) that monitor output voltages and provide logic output to the system. These differentiated features provide a complete DSP power solution.

The TPS701xx, unlike many other LDOs, feature very low quiescent current that remains virtually constant even with varying loads. Conventional LDO regulators use a pnp pass element, the base current of which is directly proportional to the load current through the regulator ($I_B = I_C/\beta$). The TPS701xx uses a PMOS transistor to pass current; because the gate of the PMOS is voltage=driven, operating current is low and stable over the full load range.

Pin Functions

Enable

The \overline{EN} terminal is an input that enables or shuts down the device. If \overline{EN} is at a voltage high signal, the device is in shutdown mode. When \overline{EN} goes to voltage low, the device is enabled.

Sequence

The SEQ terminal is an input that programs which output voltage (V_{OUT1} or V_{OUT2}) is turned on first. When the device is enabled and the SEQ terminal is pulled high or left open, V_{OUT2} turns on first and V_{OUT1} remains off until V_{OUT2} reaches approximately 83% of its regulated output voltage. At that time, V_{OUT1} is turned on. If V_{OUT2} is pulled below 83% (for example, in an overload condition) V_{OUT1} is turned off. These terminals have a 6-µA pullup current to V_{IN1} .

Pulling the SEQ terminal low reverses the power-up order and V_{OUT1} is turned on first. For detailed timing diagrams, refer to Figure 40 through Figure 44.

The PG1 is an open drain, active high output terminal that indicates the status of the V_{OUT1} regulator. When the V_{OUT1} reaches 95% of its regulated voltage, PG1 will go to a high impedance state. It will go to a low impedance state when it is pulled below 95% (for example, during an overload condition) of its regulated voltage. The open drain output of the PG1 terminal requires a pull-up resistor.

Manual Reset Pins (MR1 and MR2)

 $\overline{\text{MR1}}$ and $\overline{\text{MR2}}$ are active low input terminals used to trigger a reset condition. When either $\overline{\text{MR1}}$ or $\overline{\text{MR2}}$ is pulled to logic low, a POR (RESET) will occur. These terminals have a 6µA pull-up current to V_{IN1}.

Sense (V_{SENSE1}, V_{SENSE2})

The sense terminals of fixed-output options must be connected to the regulator output, and the connection should be as short as possible. Internally, sense connects to high-impedance, wide-bandwidth amplifiers through a resistor-divider network and noise pickup feeds through to the regulator output. It is essential to route the sense connection in such a way to minimize or avoid noise pickup. Adding RC networks between the V_{SENSE} terminals and V_{OUT} terminals to filter noise is not recommended because these networks can cause the regulators to oscillate.

FB1 and FB2

FB1 and FB2 are input terminals used for adjustable-output devices and must be connected to the external feedback resistor divider. FB1 and FB2 connections should be as short as possible. It is essential to route them in such a way as to minimize or avoid noise pickup. Adding RC networks between the FB terminals and V_{OUT} terminals to filter noise is not recommended because these networks cause the regulators to oscillate.

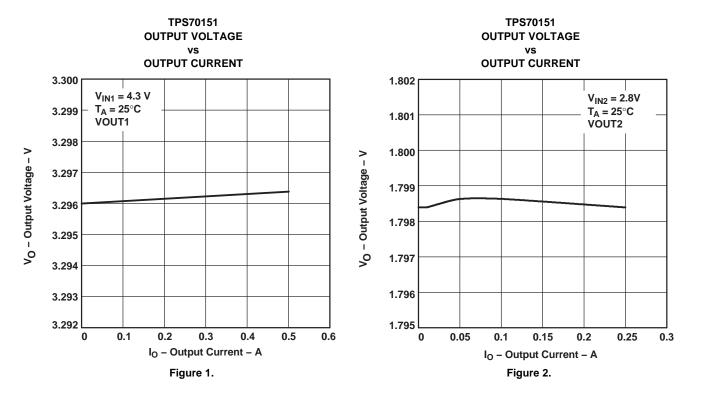
RESET Indicator

The TPS701xx features a RESET (SVS, POR, or Power-On Reset). RESET can be used to drive power-on reset circuitry or a low-battery indicator. RESET is an active low, open drain output that indicates the status of the V_{OUT2} regulator and both manual reset pins (MR1 and MR2). When V_{OUT2} exceeds 95% of its regulated voltage, and MR1 and MR2 are in the high impedance state, RESET will go to a high-impedance state after 120ms delay. RESET will go to a low-impedance state when V_{OUT2} is pulled below 95% (for example, an overload condition) of its regulated voltage. To monitor V_{OUT1} , the PG1 output pin can be connected to MR1 or MR2. The open drain output of the RESET terminal requires a pullup resistor. If RESET is not used, it can be left floating.

V_{IN1} and V_{IN2}

 V_{IN1} and V_{IN2} are input to the regulators. Internal bias voltages are powered by V_{IN1} .

V_{OUT1} and V_{OUT2}


 V_{OUT1} and V_{OUT2} are output terminals of the LDO.

TYPICAL CHARACTERISTICS

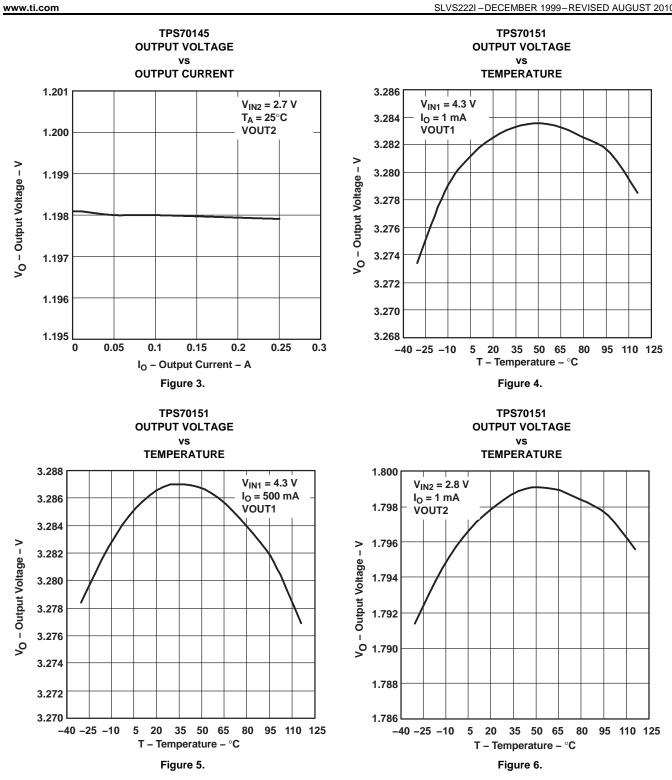
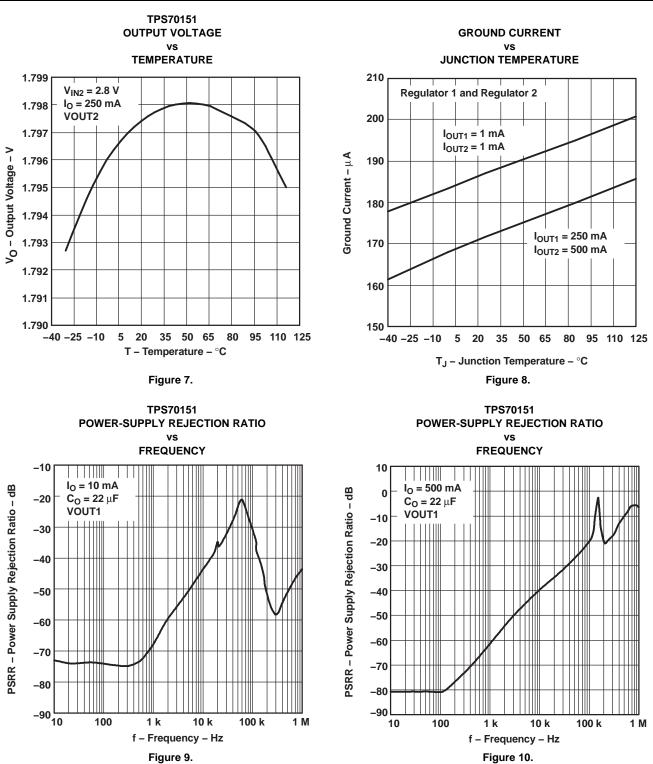
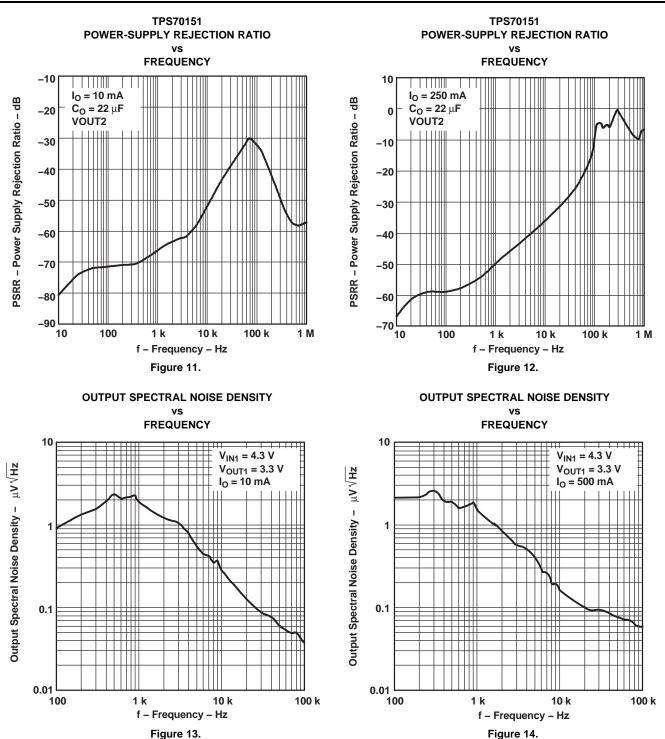

Table 2. Table of Graphs

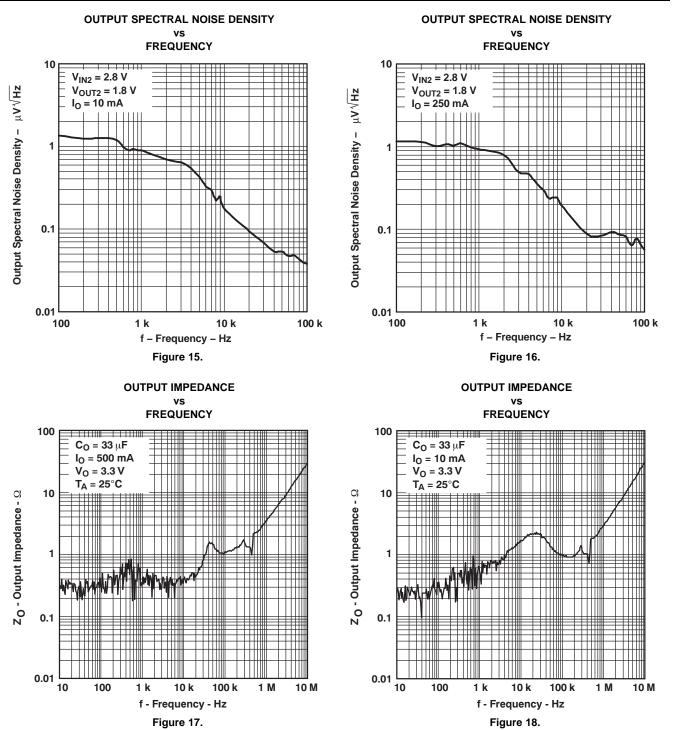
			FIGURE
M	Quitout voltogo	vs Output current	Figure 1 to Figure 3
Vo	Output voltage	vs Temperature	Figure 4 to Figure 7
	Ground current	vs Junction temperature	Figure 8
PSRR	Power-supply rejection ratio	vs Frequency	Figure 9 to Figure 12
	Output spectral noise density	vs Frequency	Figure 13 to Figure 16
ZO	Output impedance	vs Frequency	Figure 17 to Figure 20
	Drement uslike re	vs Temperature	Figure 21 and Figure 22
	Dropout voltage	vs Input voltage	Figure 23 and Figure 24
	Load transient response		Figure 25 and Figure 26
	Line transient response		Figure 27 and Figure 28
Vo	Output voltage and enable voltage	vs Time (start-up)	Figure 29 and Figure 30
	Equivalent series resistance	vs Output current	Figure 31 to Figure 38
	Test circuit for typical regions of stability	Figure 39	


SLVS222I - DECEMBER 1999-REVISED AUGUST 2010

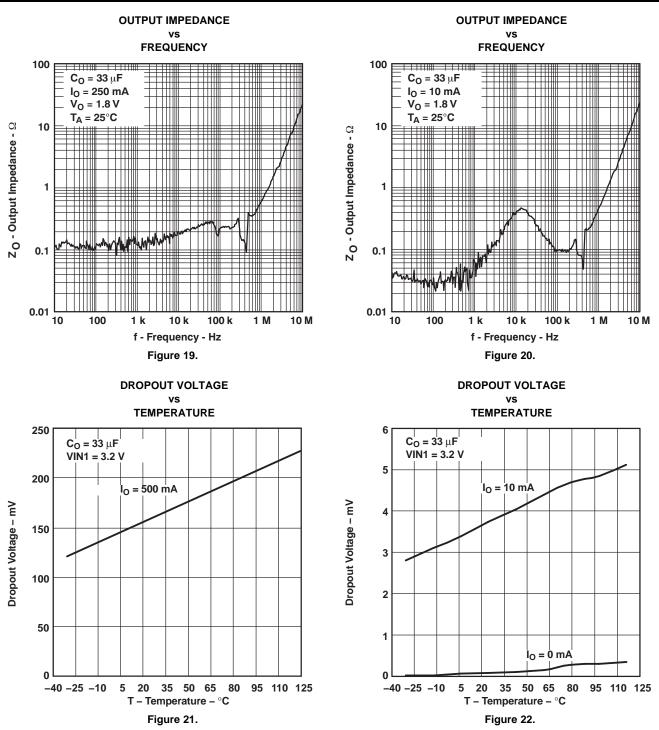
SLVS222I-DECEMBER 1999-REVISED AUGUST 2010



www.ti.com



SLVS222I – DECEMBER 1999 – REVISED AUGUST 2010



www.ti.com

TPS70102 SLVS222I – DECEMBER 1999–REVISED AUGUST 2010

SLVS222I-DECEMBER 1999-REVISED AUGUST 2010

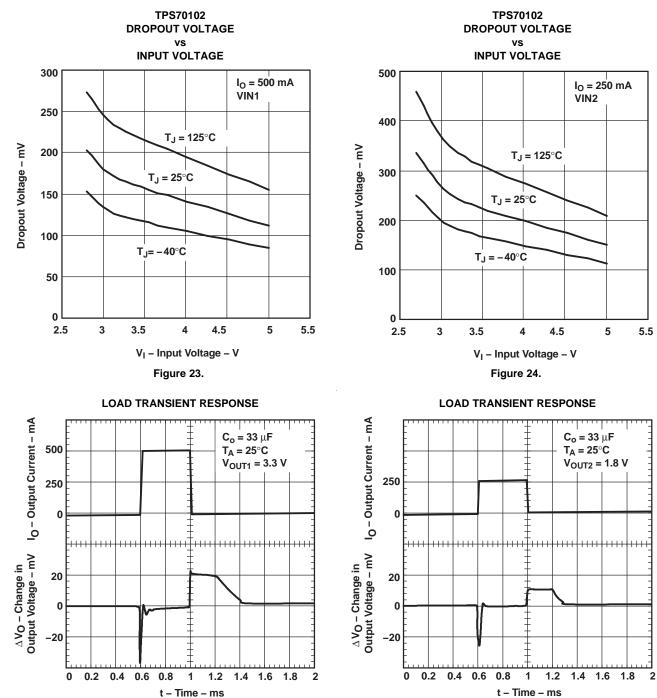
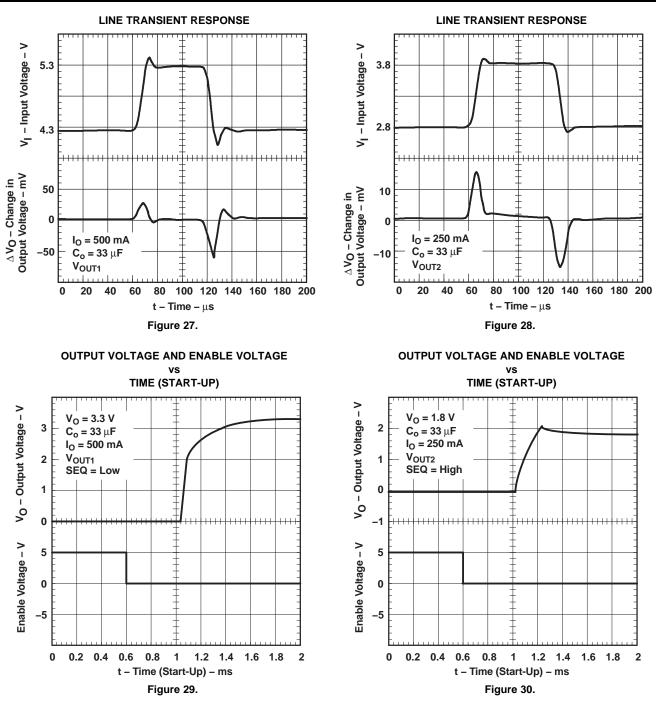
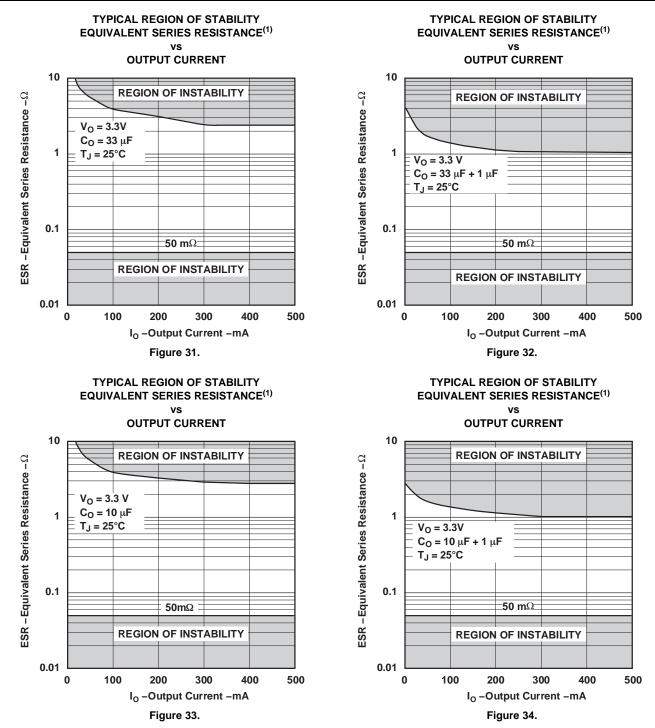


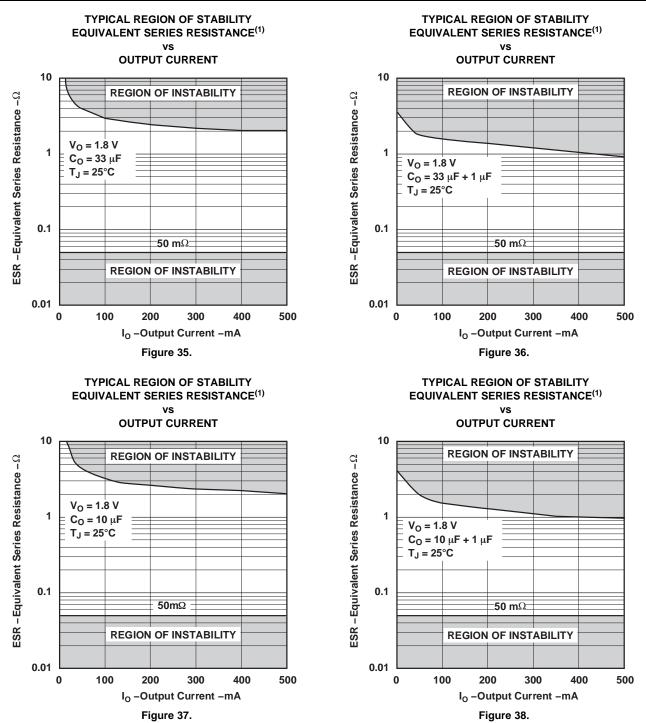
Figure 25.


t – Time – ms Figure 26.

www.ti.com


SLVS222I – DECEMBER 1999– REVISED AUGUST 2010

SLVS222I – DECEMBER 1999–REVISED AUGUST 2010


www.ti.com

⁽¹⁾ Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to C_0 .

SLVS222I - DECEMBER 1999-REVISED AUGUST 2010

⁽¹⁾ Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to C_0 .

V_I

www.ti.com

SLVS222I-DECEMBER 1999-REVISED AUGUST 2010

Ŧ

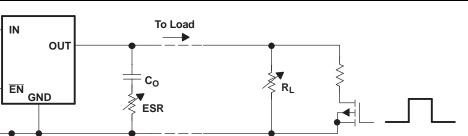
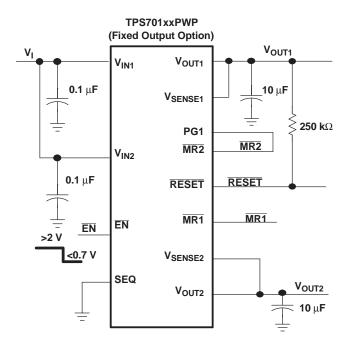
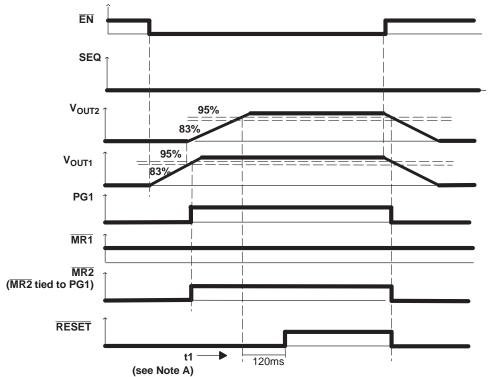


Figure 39. Test Circuit for Typical Regions of Stability

SLVS222I - DECEMBER 1999-REVISED AUGUST 2010


APPLICATION INFORMATION


Sequencing Timing Diagrams

This section provides a number of timing diagrams showing how this device functions in different configurations.

Application condition: $\overline{\text{MR2}}$ is tied to PG1, V_{IN1} and V_{IN2} are tied to the same input voltage, the SEQ pin is tied to logic low and the device is toggled with the enable (EN) function.

When the device is enabled (\overline{EN} is pulled low), V_{OUT1} turns on first and V_{OUT2} remains off until V_{OUT1} reaches approximately 83% of its regulated output voltage. At that time, V_{OUT2} is turned on. When V_{OUT1} reaches 95% of its regulated output, PG1 turns on (active high). Since MR2 is connected to PG1 for this application, it follows PG1. When V_{OUT2} reaches 95% of its regulated voltage, RESET switches to high voltage level after a 120ms delay (see Figure 40).

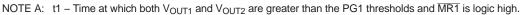
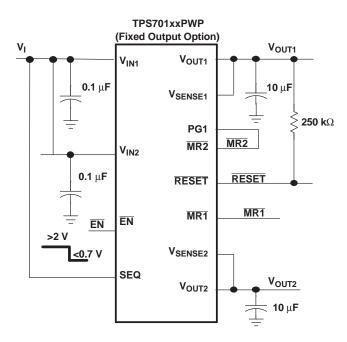


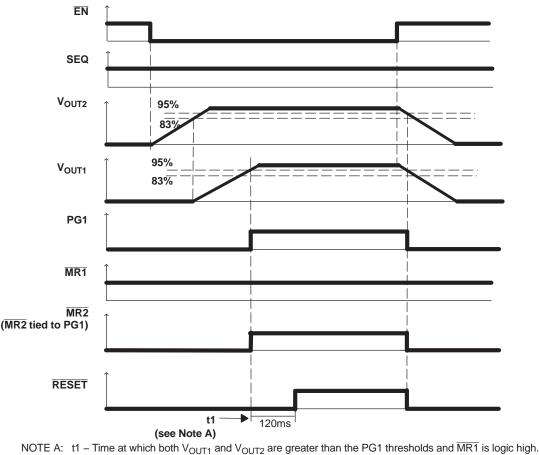
Figure 40. Timing when SEQ = Low

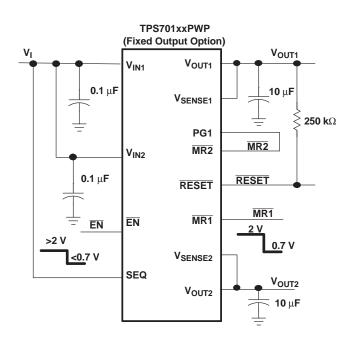

SLVS222I – DECEMBER 1999 – REVISED AUGUST 2010

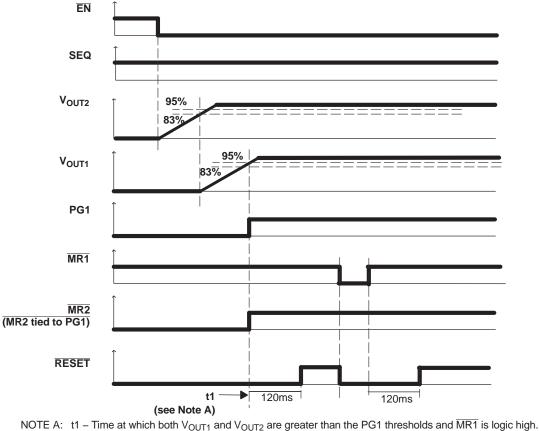
Application condition: $\overline{\text{MR2}}$ is tied to PG1, V_{IN1} and V_{IN2} are tied to the same input voltage, the SEQ pin is tied to logic high and the device is toggled with the enable ($\overline{\text{EN}}$) function.

When the device is enabled (\overline{EN} is pulled low), V_{OUT2} begins to power up. When it reaches 83% of its regulated voltage, V_{OUT1} begins to power up. PG1 turns on when V_{OUT1} reaches 95% of its regulated voltage, and since MR2 and PG1 are tied together, MR2 follows PG1. When V_{OUT1} reaches 95% of its regulated voltage, RESET switches to high voltage level after a 120ms delay (see Figure 41).

www.ti.com




Figure 41. Timing when SEQ = High



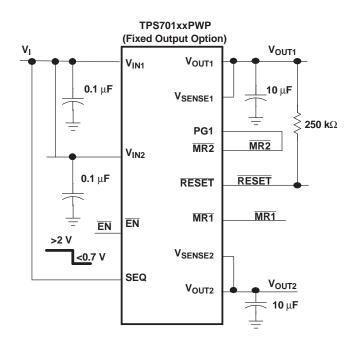
Application condition: $\overline{\text{MR2}}$ is tied to PG1, V_{IN1} and V_{IN2} are tied to the same input voltage, the SEQ pin is tied to logic high and MR1 is toggled.

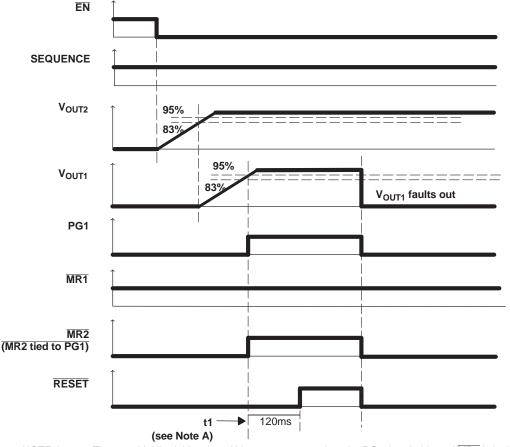
When the device is enabled ($\overline{\text{EN}}$ is pulled low), V_{OUT2} begins to power up. When it reaches 83% of its regulated voltage, V_{OUT1} begins to power up. PG1 turns on when V_{OUT1} reaches to 95% of its regulated voltage, and since MR2 and PG1 are tied together, MR2 follows PG1. When V_{OUT1} reaches 95% of its regulated voltage, the RESET switches to high voltage level after a 120ms delay. When MR1 is pulled low, it causes RESET to go low, but the regulators remains in regulation (see Figure 42).

SLVS222I – DECEMBER 1999 – REVISED AUGUST 2010

² $R_{\rm e}$ $R_{\rm e}$ = 1 mic at which both v_{0011} and v_{0012} are greater than the root timesholds and whet is logic

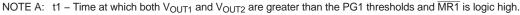
Figure 42. Timing when $\overline{\text{MR1}}$ is Toggled

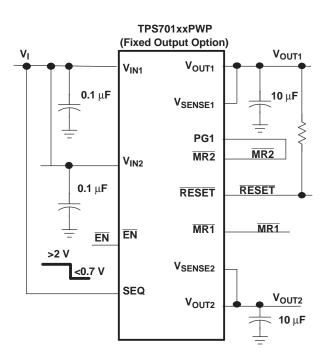

SLVS222I – DECEMBER 1999–REVISED AUGUST 2010

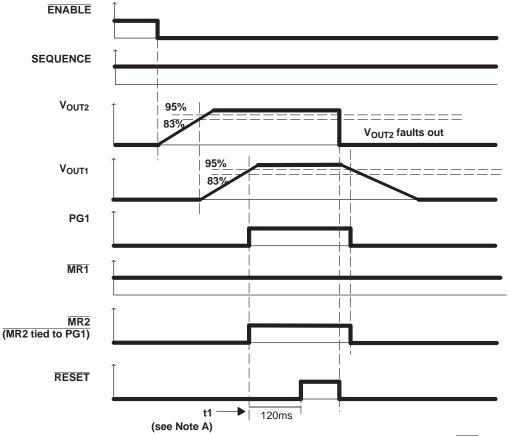

Application condition: $\overline{\text{MR2}}$ is tied to PG1, V_{IN1} and V_{IN2} are tied to the same input voltage, the SEQ pin is tied to logic high and V_{OUT1} faults out.

 V_{OUT2} begins to power up when the device is enabled (EN is pulled low). When V_{OUT2} reaches 83% of its regulated voltage, then V_{OUT1} begins to power up. When V_{OUT1} reaches 95% of its regulated voltage, PG1 turns on and RESET switches to high voltage level after a 120ms delay. When V_{OUT1} faults out, V_{OUT2} remains powered on because the SEQ pin is high. PG1 is tied to MR2 and both change state to logic low. RESET is driven by MR2 and goes to logic low when V_{OUT1} faults out (see Figure 43).

www.ti.com




Figure 43. Timing when V_{OUT1} Faults Out



Application condition: $\overline{MR2}$ is tied to PG1, V_{IN1} and V_{IN2} are tied to same input voltage, the SEQ is tied to logic high, the device is enabled, and V_{OUT2} faults out.

 V_{OUT2} begins to power up when the device is enabled (EN is pulled low). When V_{OUT2} reaches 83% of its regulated voltage, V_{OUT1} begins to power up. When V_{OUT1} reaches 95% of its regulated voltage, PG1 turns on and RESET switches to high voltage level after a 120ms delay. When V_{OUT2} faults out, V_{OUT1} is powered down because SEQ is high. PG1 is tied to MR2 and both change state to logic low. RESET goes low when V_{OUT2} faults out (see Figure 44).

SLVS222I – DECEMBER 1999–REVISED AUGUST 2010

Figure 44. Timing when V_{OUT2} Faults Out

Split Voltage DSP Application

Figure 45 shows a typical application where the TPS70151 is powering up a DSP. In this application, by grounding the SEQ pin, V_{OUT1} (I/O) is powered up first, and then V_{OUT2} (core).

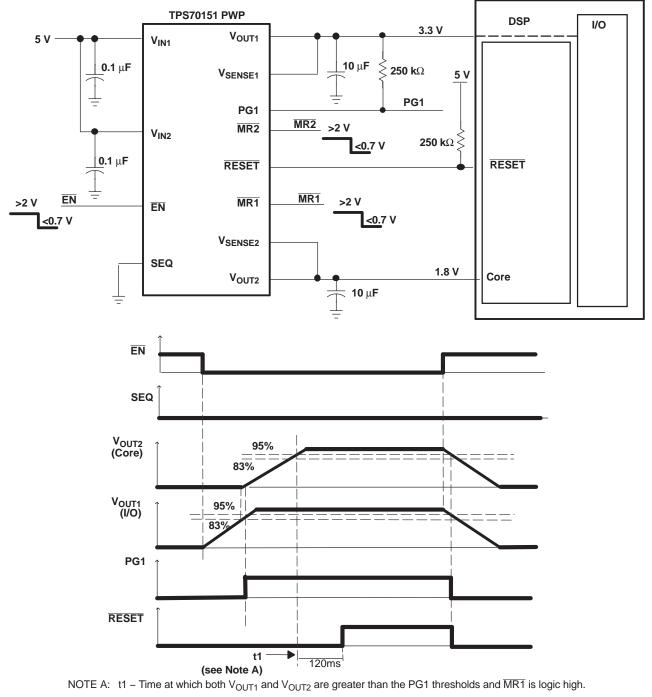


Figure 45. Application Timing Diagram (SEQ = Low)

SLVS222I – DECEMBER 1999 – REVISED AUGUST 2010

Figure 46 shows a typical application where the TPS70151 is powering up a DSP. In this application, by pulling up the SEQ pin, V_{OUT2} (core) is powered up first, and then V_{OUT1} (I/O).

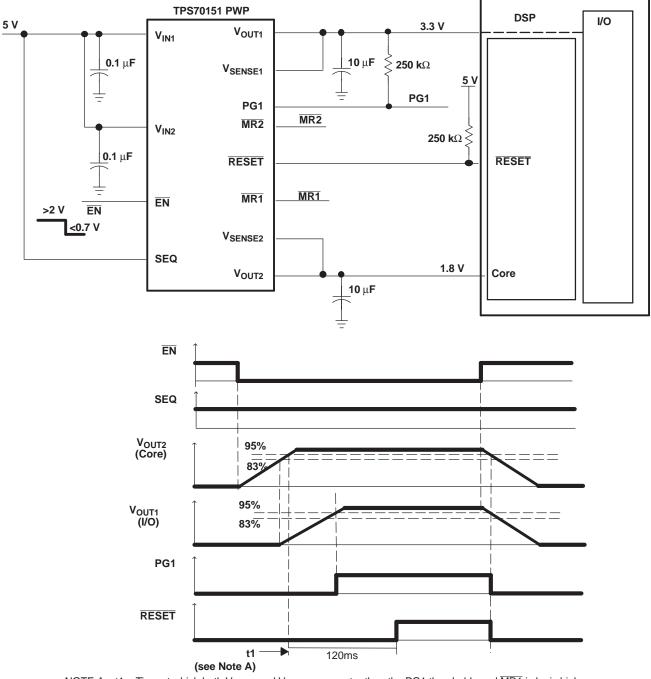


Figure 46. Application Timing Diagram (SEQ = High)

Input Capacitor

For a typical application, an input bypass capacitor $(0.1\mu F$ to $1\mu F)$ is recommended. This capacitor filters any high-frequency noise generated in the line. For fast transient conditions where droop at the input of the LDO may occur because of high inrush current, it is recommended to place a larger capacitor at the input as well. The size of this capacitor depends on the output current and response time of the main power supply, as well as the distance to the V₁ pins of the LDO.

Copyright © 1999–2010, Texas Instruments Incorporated

Output Capacitor

As with most LDO regulators, the TPS701xx requires an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance value is 10μ F and the ESR (equivalent series resistance) must be between $50m\Omega$ and 2.5Ω . Capacitor values 10μ F or larger are acceptable, provided the ESR is less than 2.5Ω . Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements described above. Larger capacitors provide a wider range of stability and better load transient response. Table 3 provides a partial listing of surface-mount capacitors suitable for use with the TPS701xx for fast transient response application.

This information, along with the ESR graphs, is included to assist in selection of suitable capacitance for the user application. When necessary to achieve low height requirements along with high output current and/or high load capacitance, several higher ESR capacitors can be used in parallel to meet the guidelines above.

VALUE	MANUFACTURER	MAXIMUM ESR	MFR PART NO.
22µF	Kemet	345mΩ	7495C226K0010AS
33µF	Sanyo	100mΩ	10TPA33M
47µF	Sanyo	100mΩ	6TPA47M
68µF	Sanyo	45mΩ	10TPC68M

Table 3. Partial Listing of TPS701xx-Compatible Surface-Mount Capacitors

ESR and Transient Response

LDOs typically require an external output capacitor for stability. In fast transient response applications, capacitors are used to support the load current while the LDO amplifier is responding. In most applications, one capacitor is used to support both functions.

Besides its capacitance, every capacitor also contains parasitic impedances. These parasitic impedances are resistive as well as inductive. The resistive impedance is called *equivalent series resistance* (ESR), and the inductive impedance is called *equivalent series inductance* (ESL). The equivalent schematic diagram of any capacitor can therefore be drawn as shown in Figure 47.

Figure 47. ESR and ESL

In most cases one can neglect the effect of inductive impedance ESL. Therefore, the following application focuses mainly on the parasitic resistance ESR.

Figure 48 shows the output capacitor and its parasitic resistances in a typical LDO output stage.

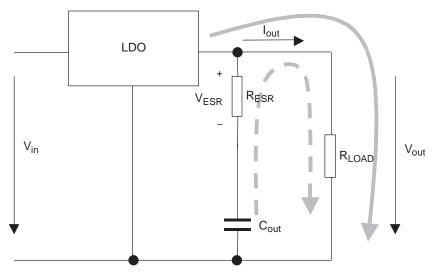


Figure 48. LDO Output Stage with Parasitic Resistances ESR

In steady state (dc state condition), the load current is supplied by the LDO (solid arrow) and the voltage across the capacitor is the same as the output voltage ($V_{(CO)} = V_{OUT}$). This condition means no current is flowing into the C₀ branch. If I_{OUT} suddenly increases (a transient condition), the following results occur:

- The LDO is not able to supply the sudden current need because of its response time (t₁ in Split Voltage DSP Application). Therefore, capacitor C₀ provides the current for the new load condition (dashed arrow). C₀ now acts like a battery with an internal resistance, ESR. Depending on the current demand at the output, a voltage drop occurs at R_{ESR}. This voltage is shown as V_{ESR} in Figure 44.
- When C_0 is conducting current to the load, initial voltage at the load will be $V_0 = V_{(CO)} V_{ESR}$. As a result of the discharge of C_0 , the output voltage V_0 drops continuously until the response time t_1 of the LDO is reached and the LDO resumes supplying the load. From this point, the output voltage starts rising again until it reaches the regulated voltage. This period is shown as t_2 in Figure 49.

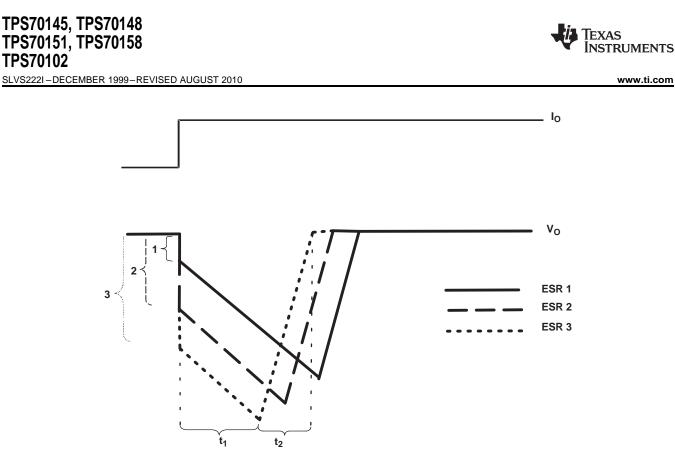


Figure 49. Correlation of Different ESRs and Their Influence on the Regulation of V_o at a Load Step from Low-to-High Output Current

Figure 49 also shows the impact of different ESRs on the output voltage. The left brackets show different levels of ESRs where number 1 displays the lowest and number 3 displays the highest ESR.

From above, the following conclusions can be drawn:

- The higher the ESR, the larger the droop at the beginning of load transient.
- The smaller the output capacitor, the faster the discharge time and the greater the voltage droop during the LDO response period.

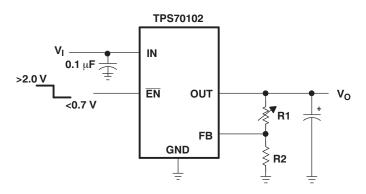
Conclusion

To minimize the transient output droop, capacitors must have a low ESR and be large enough to support the minimum output voltage requirement.

Programming the TPS70102 Adjustable LDO Converter

The output voltage of the TPS70102 adjustable regulators are programmed using external resistor dividers as shown in Figure 50.

Resistors R1 and R2 should be chosen for approximately 50μ A divider current. Lower value resistors can be used, but offer no inherent advantage and waste more power. Higher values should be avoided as leakage currents at the sense terminal increase the output voltage error. The recommended design procedure is to choose R2 = 30.1k Ω to set the divider current at approximately 50μ A, and then calculate R1 using Equation 1:


$$R1 = \left(\frac{V_{o}}{V_{ref}} - 1\right) \times R2$$

where:

• V_{REF} = 1.224V typ (the internal reference voltage)

(1)

OUTPUT VOLTAGE
PROGRAMMING GUIDE

OUTPUT VOLTAGE	R1	R2	UNIT
2.5 V	31.6	30.1	kΩ
3.3 V	51.1	30.1	kΩ
3.6 V	59.0	30.1	kΩ

Figure 50. TPS70102 Adjustable LDO Regulator Programming

Regulator Protection

Both TPS701xx PMOS-pass transistors have built-in back diodes that conduct reverse currents when the input voltage drops below the output voltage (for example, during power-down). Current is conducted from the output to the input and is not internally limited. When extended reverse voltage is anticipated, external limiting may be appropriate.

The TPS701xx also features internal current limiting and thermal protection. During normal operation, the TPS701xx regulator 1 limits output current to approximately 1.6A (typ) and regulator 2 limits output current to approximately 750mA (typ). When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds +150°C (typ), thermal-protection circuitry shuts it down. Once the device has cooled below +130°C (typ), regulator operation resumes.

Power Dissipation and Junction Temperature

Specified regulator operation is assured to a junction temperature of +125°C; the maximum junction temperature should be restricted to +125°C under normal operating conditions. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, $P_{D(max)}$, and the actual dissipation, P_D , which must be less than or equal to $P_{D(max)}$.

The maximum-power-dissipation limit is determined using Equation 2:

$$P_{D(max)} = \frac{T_J \max - T_A}{R_{\theta J A}}$$
(2)

where:

- T_{Jmax} is the maximum allowable junction temperature
- $R_{\theta JA}$ is the thermal resistance junction-to-ambient for the package; that is, 32.6°C/W for the 20-terminal PWP with no airflow
- T_A is the ambient temperature

The regulator dissipation is calculated using Equation 3:

$$\mathbf{P}_{\mathrm{D}} = (\mathbf{V}_{\mathrm{I}} - \mathbf{V}_{\mathrm{O}}) \times \mathbf{I}_{\mathrm{O}}$$

Power dissipation resulting from quiescent current is negligible. Excessive power dissipation will trigger the thermal protection circuit.

(3)

ÈXAS ISTRUMENTS

www.ti.com

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	Changes from Revision H (December, 2009) to Revision I P									
•	Replaced the Dissipation Ratings table with the Thermal Information table	4								
C	Changes from Revision G (August, 2009) to Revision H	Page								
•	Corrected typo in output current limit specification units	5								
•	Corrected typo in V _{OUT2} UV comparator, falling edge deglitch specification units	5								

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings (4)	Samples
TPS70102PWP	ACTIVE	HTSSOP	PWP	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70102	Samples
TPS70102PWPG4	ACTIVE	HTSSOP	PWP	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70102	Samples
TPS70102PWPR	ACTIVE	HTSSOP	PWP	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70102	Samples
TPS70102PWPRG4	ACTIVE	HTSSOP	PWP	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70102	Samples
TPS70145PWP	ACTIVE	HTSSOP	PWP	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70145	Samples
TPS70145PWPG4	ACTIVE	HTSSOP	PWP	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70145	Samples
TPS70145PWPR	ACTIVE	HTSSOP	PWP	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70145	Samples
TPS70145PWPRG4	ACTIVE	HTSSOP	PWP	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70145	Samples
TPS70148PWP	ACTIVE	HTSSOP	PWP	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70148	Samples
TPS70148PWPG4	ACTIVE	HTSSOP	PWP	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70148	Samples
TPS70148PWPR	ACTIVE	HTSSOP	PWP	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70148	Samples
TPS70148PWPRG4	ACTIVE	HTSSOP	PWP	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70148	Samples
TPS70151PWP	ACTIVE	HTSSOP	PWP	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70151	Samples
TPS70151PWPG4	ACTIVE	HTSSOP	PWP	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70151	Samples
TPS70151PWPR	ACTIVE	HTSSOP	PWP	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70151	Samples
TPS70151PWPRG4	ACTIVE	HTSSOP	PWP	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70151	Samples
TPS70158PWP	ACTIVE	HTSSOP	PWP	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70158	Samples

11-Apr-2013

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
TPS70158PWPG4	ACTIVE	HTSSOP	PWP	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70158	Samples
TPS70158PWPR	ACTIVE	HTSSOP	PWP	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70158	Samples
TPS70158PWPRG4	ACTIVE	HTSSOP	PWP	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	PT70158	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

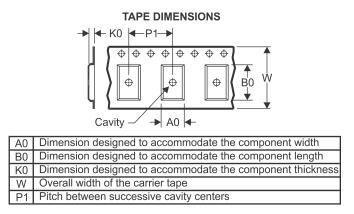
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

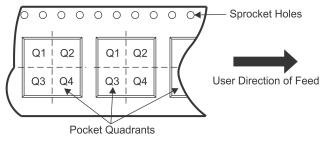
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

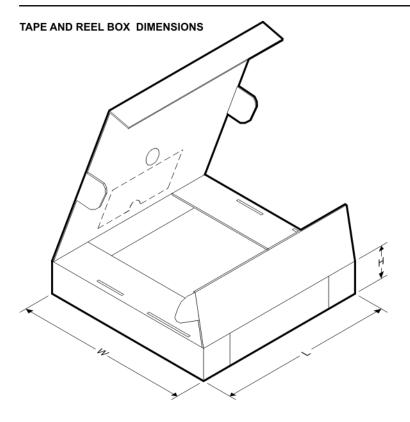

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

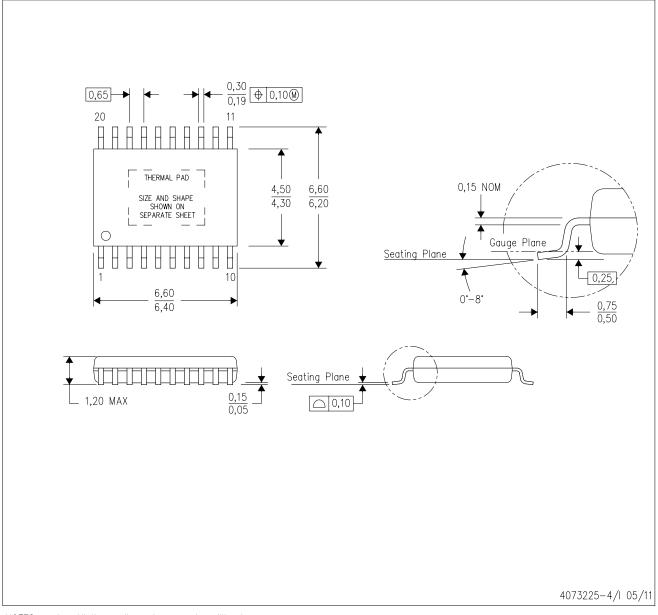

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS70102PWPR	HTSSOP	PWP	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
TPS70145PWPR	HTSSOP	PWP	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
TPS70148PWPR	HTSSOP	PWP	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
TPS70151PWPR	HTSSOP	PWP	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
TPS70158PWPR	HTSSOP	PWP	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

Texas Instruments

www.ti.com

PACKAGE MATERIALS INFORMATION

26-Jan-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS70102PWPR	HTSSOP	PWP	20	2000	367.0	367.0	38.0
TPS70145PWPR	HTSSOP	PWP	20	2000	367.0	367.0	38.0
TPS70148PWPR	HTSSOP	PWP	20	2000	367.0	367.0	38.0
TPS70151PWPR	HTSSOP	PWP	20	2000	367.0	367.0	38.0
TPS70158PWPR	HTSSOP	PWP	20	2000	367.0	367.0	38.0

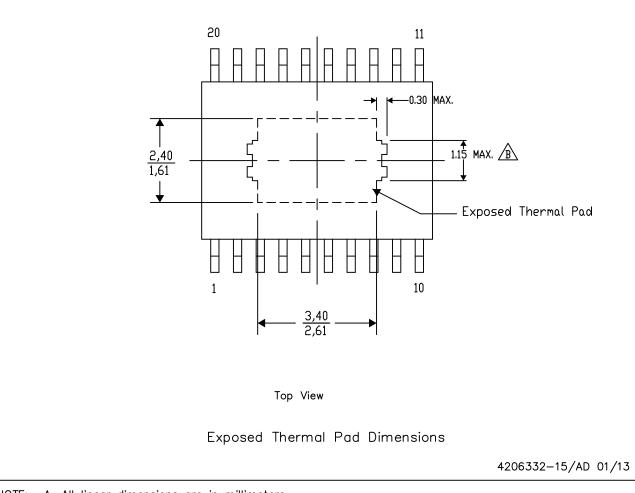
PWP (R-PDSO-G20)

PowerPAD[™] PLASTIC SMALL OUTLINE

All linear dimensions are in millimeters. NOTES: Α.

- Β. This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side. C.
- This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad D.
- Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com. E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.


PWP (R-PDSO-G20) PowerPAD[™] SMALL PLASTIC OUTLINE

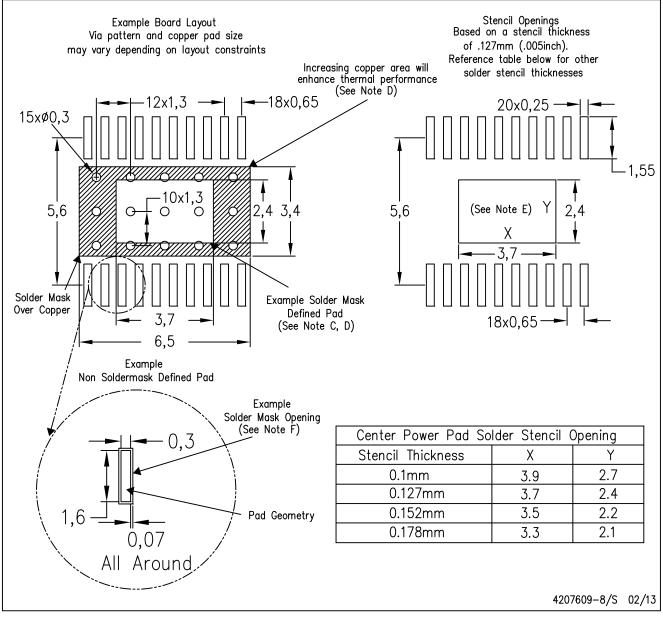
THERMAL INFORMATION

This PowerPAD[™] package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters


🖄 Exposed tie strap features may not be present.

PowerPAD is a trademark of Texas Instruments

PWP (R-PDSO-G20)

PowerPAD[™] PLASTIC SMALL OUTLINE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>. Publication IPC-7351 is recommended for alternate designs.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
 - F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

TEXAS INSTRUMENTS www.ti.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated