
LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS

Check for Samples: TLVH431A-Q1, TLVH431B-Q1

FEATURES

- Qualified for Automotive Applications
- Low-Voltage Operation: Down to 1.24 V
- Reference Voltage Tolerances at 25°C
 - 0.5% for B Grade
 - 1% for A Grade
- Adjustable Output Voltage, V_O = V_{REF} to 18 V
- Wide Operating Cathode Current Range: 100 µA to 70 mA
- 0.25-Ω Typical Output Impedance
- –40°C to 125°C Specifications

NC - No internal connection

DESCRIPTION/ORDERING INFORMATION

The TLVH431 devices are low-voltage 3-terminal adjustable voltage references, with thermal stability specified over the automotive temperature range. Output voltage can be set to any value between V_{REF} (1.24 V) and 18 V with two external resistors (see Figure 2). These devices operate from a lower voltage (1.24 V) than the widely used TL431 and TL1431 shunt-regulator references.

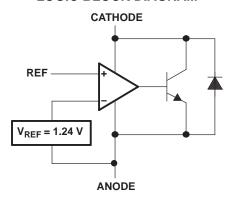
When used with an optocoupler, the TLVH431 devices are ideal voltage reference in isolated feedback circuits for 3-V to 3.3-V switching-mode power supplies. They have a typical output impedance of 0.25 Ω . Active output circuitry provides a very sharp turn-on characteristic, making the TLVH431 an excellent replacement for low-voltage Zener diodes in many applications, including on-board regulation and adjustable power supplies.

ORDERING INFORMATION⁽¹⁾

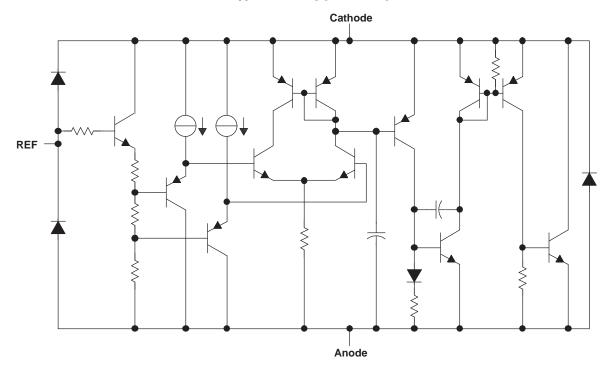
T _A	V _{REF} TOLERANCE	PACKAG	iE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	0.5%	SOT-23-5 – DBV	Reel of 3000	TLVH431BQDBVRQ1	VOPQ
–40°C to 125°C	0.5%	SOT-23-3 - DBZ	Reel of 3000	TLVH431BQDBZRQ1	VPIQ
	1%	SOT-23-5 – DBV	Reel of 3000	TLVH431AQDBVRQ1	VOOQ

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


^{*} Pin 2 is attached to Substrate and must be connected to ANODE or left open.

LOGIC BLOCK DIAGRAM

EQUIVALENT SCHEMATIC

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

V_{KA}	Cathode voltage ⁽²⁾	20 V
I_{K}	Cathode current range	–25 mA to 80 mA
I _{ref}	Reference current range	-0.05 mA to 3 mA
θ_{JA}	Package thermal impedance (3) (4)	206°C/W
TJ	Operating virtual junction temperature	150°C
T _{stg}	Storage temperature range	−65°C to 150°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) Voltage values are with respect to the anode terminal, unless otherwise noted.
- (3) Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- (4) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS

		MIN	MAX	UNIT
V_{KA}	Cathode voltage	V_{REF}	18	٧
I _K	Cathode current (continuous)	0.1	70	mA
T_A	Operating free-air temperature	-40	125	°C

TLVH431A ELECTRICAL CHARACTERISTICS

at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	MIN	TYP	MAX	UNIT	
			T _A = 25°C	1.228	1.24	1.252	
V_{REF}	Reference voltage	$V_{KA} = V_{REF}$, $I_K = 10 \text{ mA}$	T _A = full range ⁽¹⁾ (see Figure 1)	1.209		1.271	V
V _{REF(dev)}	V_{REF} deviation over full temperature range $^{(1)}$ $^{(2)}$	$V_{KA} = V_{REF}$, $I_K = 10 \text{ mA}$ (s		11	31	mV	
$\frac{\Delta V_{REF}}{\Delta V_{KA}}$	Ratio of V _{REF} change to cathode voltage change	$V_{K} = V_{REF}$ to 18 V, $I_{K} = 10$		-1.5	-2.7	mV/V	
I _{ref}	Reference terminal current	I_K = 10 mA, R1 = 10 kΩ, I	$I_K = 10 \text{ mA}, R1 = 10 \text{ k}\Omega, R2 = \text{open (see Figure 2)}$				μA
I _{ref(dev)}	I _{ref} deviation over full temperature range ⁽¹⁾ (2)	$I_{K} = 10 \text{ mA}, R1 = 10 \text{ k}\Omega, I$	R2 = open (see Figure 2)		0.15	0.5	μΑ
I _{K(min)}	Minimum cathode current for regulation	$V_{KA} = V_{REF}$ (see Figure 1)		60	100	μΑ	
I _{K(off)}	Off-state cathode current	V _{REF} = 0, V _{KA} = 18 V (see	e Figure 3)		0.02	0.1	μA
z _{KA}	Dynamic impedance ⁽³⁾	$V_{KA} = V_{REF}, f \le 1 \text{ kHz}, I_K :$ (see Figure 1)	= 0.1 mA to 70 mA		0.25	0.4	Ω

Full temperature range is -40°C to 125°C.

The deviation parameters $V_{REF(dev)}$ and $I_{ref(dev)}$ are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV_{REF} , is defined as: $\frac{\left(\frac{V_{REF(dev)}}{V_{REF}(T_A=25^{\circ}C)}\right) \times 10^{6}}{\left(\frac{V_{REF}}{V_{REF}}\right)} = \frac{\left(\frac{V_{REF(dev)}}{V_{REF}}\right) \times 10^{6}}{\left(\frac{V_{REF}}{V_{REF}}\right)} = \frac{\left(\frac{V_{REF(dev)}}{V_{REF}}\right) \times 10^{6}}{\left(\frac{V_{REF}}{V_{REF}}\right)} = \frac{\left(\frac{V_{REF(dev)}}{V_{REF}}\right) \times 10^{6}}{\left(\frac{V_{REF}}{V_{REF}}\right)} = \frac{\left(\frac{V_{REF}}{V_{REF}}\right) \times 10^{6}}{\left(\frac{V_{REF}}{V_{REF}}\right)} = \frac{\left(\frac{V_{REF}}{V_{REF}}\right) \times 10^{6}}{\left(\frac{V_{REF}}{V_{REF}}\right)} = \frac{\left(\frac{V_{REF}}{V_{REF}}\right) \times 10^{6}}{\left(\frac{V_{REF}}{V_{REF}}\right)} = \frac{\left(\frac{V_{REF}}{V_{REF}}\right) \times 10^{6}}{\left(\frac{V_{REF}}{V_{REF}}\right)} = \frac{10^{6}}{V_{REF}}$

$$|\alpha V_{REF}| \left(\frac{ppm}{{}^{\circ}C}\right) = \frac{\left(\frac{V_{REF(dev)}}{V_{REF}(T_A = 25{}^{\circ}C)}\right) \times 10^6}{\Delta T_A}$$

where ΔT_A is the rated operating free-air temperature range of the device. αV_{REF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF} , respectively, occurs at the lower

(3) The dynamic impedance is defined as: $|z_{KA}| = \frac{\Delta^{V} KA}{\Delta^{I} K}$

$$|z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$$

When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is defined as: $\left|z_{KA}\right| = \frac{\Delta V}{\Delta I} \approx \left|z_{KA}\right| \times \left(1 + \frac{R1}{R2}\right)$

$$|z_{KA}| = \frac{\Delta V}{\Delta I} \approx |z_{KA}| \times \left(1 + \frac{R1}{R2}\right)$$

TLVH431B ELECTRICAL CHARACTERISTICS

at 25°C free-air temperature (unless otherwise noted)

PARAMETER		TEST CO	TEST CONDITIONS				
			$T_A = 25^{\circ}C$	1.234	1.24	1.246	
V_{REF}	Reference voltage	$V_{KA} = V_{REF}$, $I_K = 10 \text{ mA}$	T _A = full range ⁽¹⁾ (see Figure 1)	1.221		1.265	V
V _{REF(dev)}	V_{REF} deviation over full temperature range $^{(1)}$ $^{(2)}$	$V_{KA} = V_{REF}$, $I_K = 10$ mA (s		11	31	mV	
$\frac{\Delta V_{REF}}{\Delta V_{KA}}$	Ratio of $V_{\mbox{\scriptsize REF}}$ change to cathode voltage change	$I_K = 10 \text{ mA}, V_K = V_{REF} \text{ to}$		-1.5	-2.7	mV/V	
I _{ref}	Reference terminal current	$I_K = 10 \text{ mA}, R1 = 10 \text{ k}\Omega, F$	$I_K = 10 \text{ mA}, R1 = 10 \text{ k}\Omega, R2 = \text{open (see Figure 2)}$				μΑ
I _{ref(dev)}	I _{ref} deviation over full temperature range ⁽¹⁾ (2)	I_K = 10 mA, R1 = 10 kΩ, F	R2 = open (see Figure 2)		0.15	0.5	μΑ
I _{K(min)}	Minimum cathode current for regulation	$V_{KA} = V_{REF}$ (see Figure 1))		60	100	μΑ
I _{K(off)}	Off-state cathode current	$V_{REF} = 0$, $V_{KA} = 18 \text{ V}$ (see	e Figure 3)		0.02	0.1	μΑ
z _{KA}	Dynamic impedance (3)	$V_{KA} = V_{REF}, f \le 1 \text{ kHz}, I_K :$ (see Figure 1)	= 0.1 mA to 70 mA		0.25	0.4	Ω

- Full temperature range is -40°C to 125°C.
- The deviation parameters $V_{REF(dev)}$ and $I_{ref(dev)}$ are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV_{REF} , is defined as: $\frac{\left(\frac{V_{REF(dev)}}{V_{REF}(T_A=25^{\circ}C)}\right) \times 10^{6}}{\left(\frac{V_{REF}(T_A=25^{\circ}C)}{V_{REF}(T_A=25^{\circ}C)}\right)} \times 10^{6}$

$$|\alpha V_{REF}| \left(\frac{ppm}{oC}\right) = \frac{\left(\frac{V_{REF(dev)}}{V_{REF}(T_A = 25^{\circ}C)}\right) \times 10^6}{\Delta T_A}$$

where ΔT_A is the rated operating free-air temperature range of the device. αV_{REF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF} , respectively, occurs at the lower

The dynamic impedance is defined as: $\left|z_{KA}\right| = \frac{\Delta^V KA}{\Delta^I K}$

$$|z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$$

When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is defined as: $\left|z_{KA}\right| = \frac{\Delta V}{\Delta I} \approx \left|z_{KA}\right| \times \left(1 + \frac{R1}{R2}\right)$

$$|z_{KA}| = \frac{\Delta V}{\Delta I} \approx |z_{KA}| \times \left(1 + \frac{R1}{R2}\right)$$

Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1

PARAMETER MEASUREMENT INFORMATION

Operation of the device at any conditions beyond those indicated under *recommended operating conditions* is not implied.

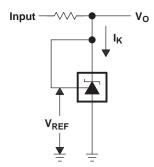


Figure 1. Test Circuit for $V_{KA} = V_{REF}$, $V_{O} = V_{KA} = V_{REF}$

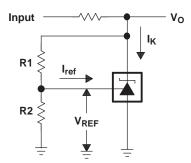


Figure 2. Test Circuit for $V_{KA} > V_{REF}$, $V_{O} = V_{KA} = V_{REF} \times (1 + R1/R2) + I_{ref} \times R1$

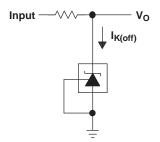
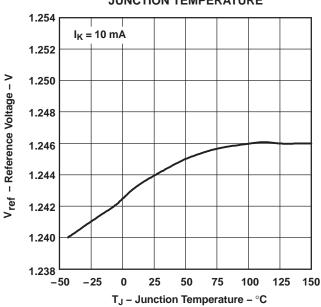
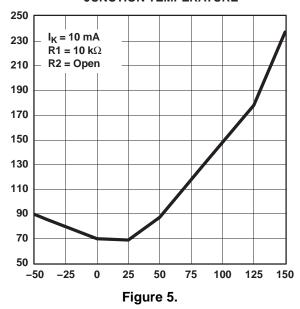
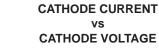


Figure 3. Test Circuit for I_{K(off)}

REFERENCE VOLTAGE vs JUNCTION TEMPERATURE


Figure 4.

REFERENCE INPUT CURRENT

JUNCTION TEMPERATURE

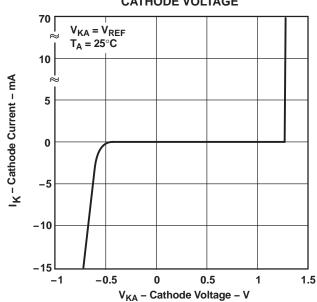


Figure 6.

CATHODE CURRENT vs CATHODE VOLTAGE

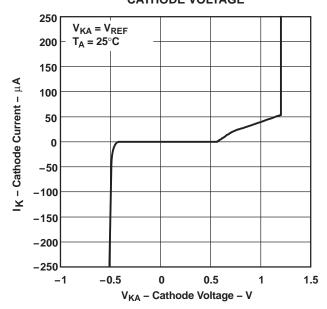


Figure 7.

OFF-STATE CATHODE CURRENT vs JUNCTION TEMPERATURE

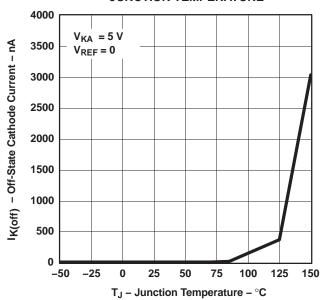


Figure 8.

RATIO OF DELTA REFERENCE VOLTAGE TO DELTA CATHODE VOLTAGE

JUNCTION TEMPERATURE

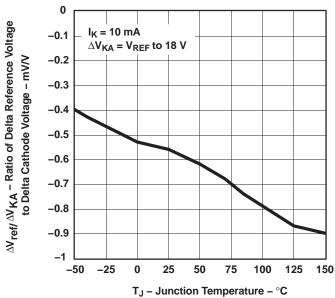
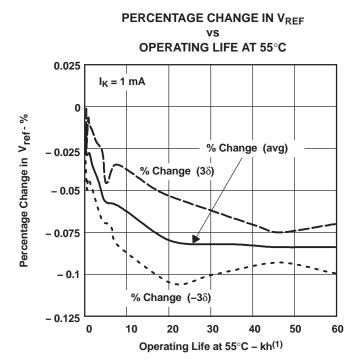
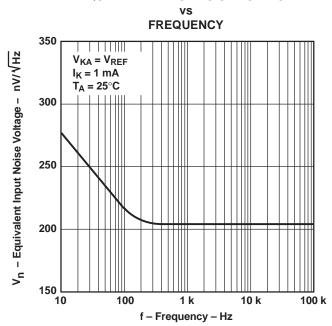
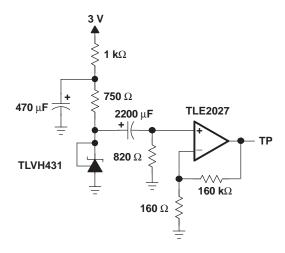



Figure 9.

TEXAS INSTRUMENTS

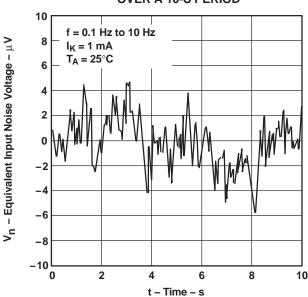

PARAMETER MEASUREMENT INFORMATION (continued)



(1) Extrapolated from life-test data taken at 125°C; the activation energy assumed is 0.7 eV.

Figure 10.

EQUIVALENT INPUT NOISE VOLTAGE



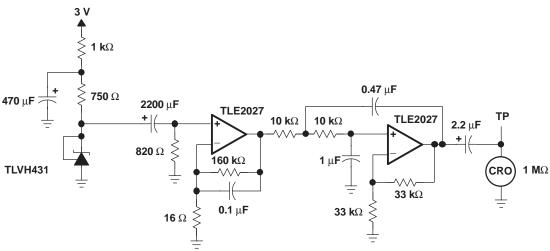
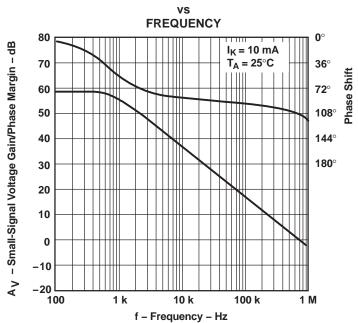

TEST CIRCUIT FOR EQUIVALENT INPUT NOISE VOLTAGE

Figure 11.

EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-S PERIOD



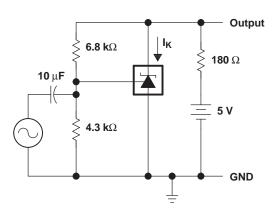
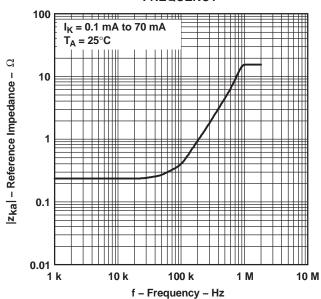

TEST CIRCUIT FOR 0.1-Hz TO 10-Hz EQUIVALENT NOISE VOLTAGE

Figure 12.

SMALL-SIGNAL VOLTAGE GAIN /PHASE MARGIN



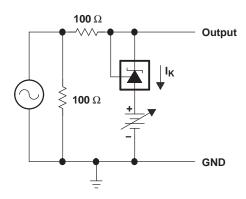
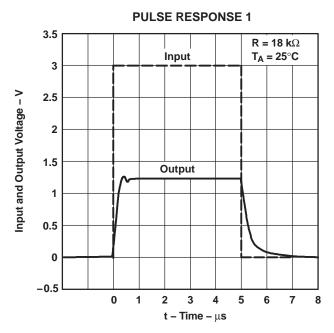
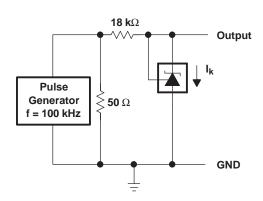

TEST CIRCUIT FOR VOLTAGE GAIN AND PHASE MARGIN

Figure 13.

REFERENCE IMPEDANCE

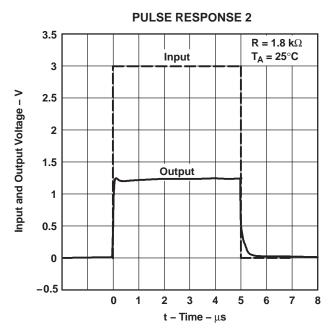
vs FREQUENCY

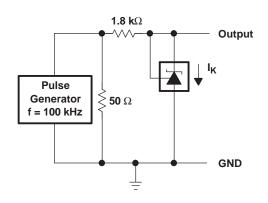




TEST CIRCUIT FOR REFERENCE IMPEDANCE

Figure 14.





TEST CIRCUIT FOR PULSE RESPONSE 1

Figure 15.

TEST CIRCUIT FOR PULSE RESPONSE 2

Figure 16.

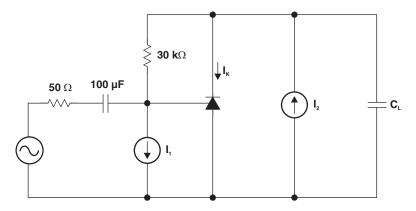


Figure 17. Phase Margin Test Circuit

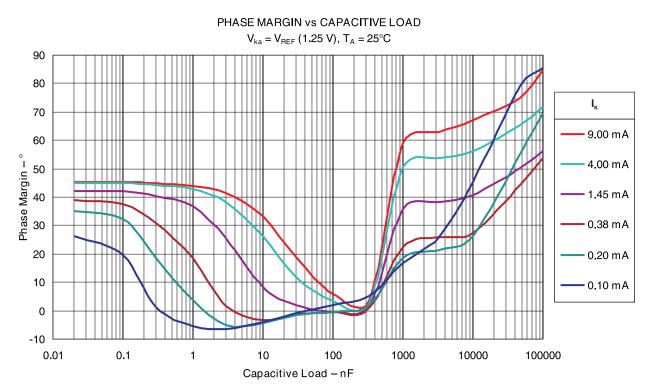


Figure 18.

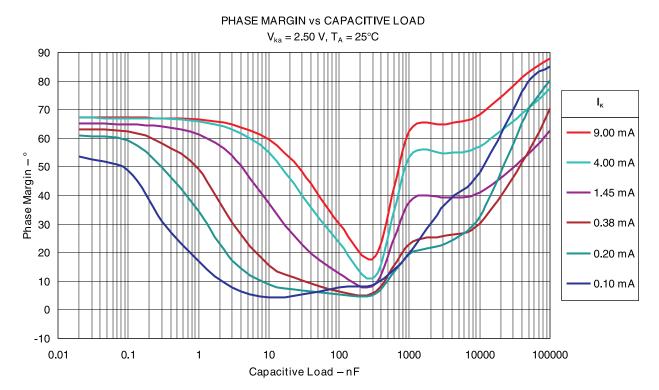


Figure 19.

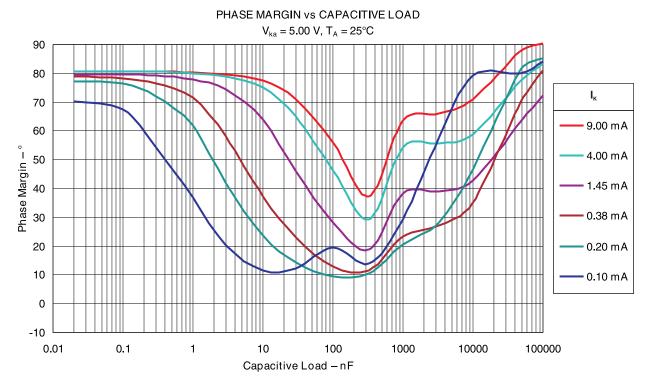


Figure 20.

APPLICATION INFORMATION

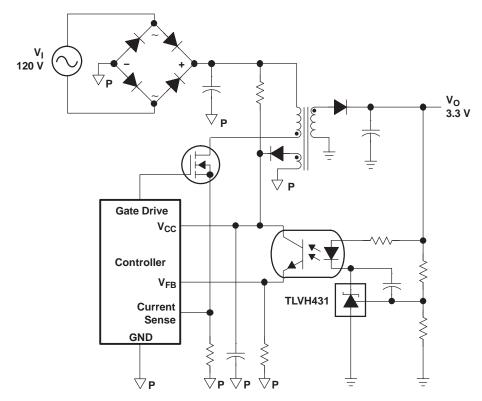


Figure 21. Flyback With Isolation Using TLVH431 as Voltage Reference and Error Amplifier

Figure 21 shows the TLVH431 used in a 3.3-V isolated flyback supply. Output voltage V_O can be as low as reference voltage V_{REF} (1.24 V). The output of the regulator plus the forward voltage drop of the optocoupler LED (1.24 + 1.4 = 2.64 V) determine the minimum voltage that can be regulated in an isolated supply configuration. Regulated voltage as low as 2.7 Vdc is possible in the topology shown in Figure 21.

24-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
TLVH431AQDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VOOQ	Samples
TLVH431BQDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VOPQ	Samples
TLVH431BQDBZRQ1	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VPIQ	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

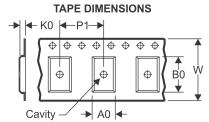
OTHER QUALIFIED VERSIONS OF TLVH431A-Q1, TLVH431B-Q1:

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

ww.ti.com 24-Jan-2013

● Catalog: TLVH431A, TLVH431B

NOTE: Qualified Version Definitions:


Catalog - Tl's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Mar-2013

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

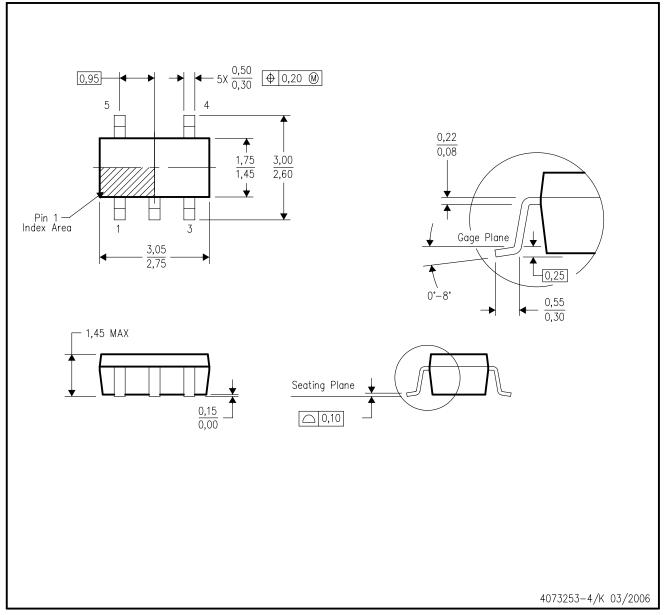
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLVH431AQDBVRQ1	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLVH431BQDBVRQ1	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLVH431BQDBZRQ1	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Mar-2013

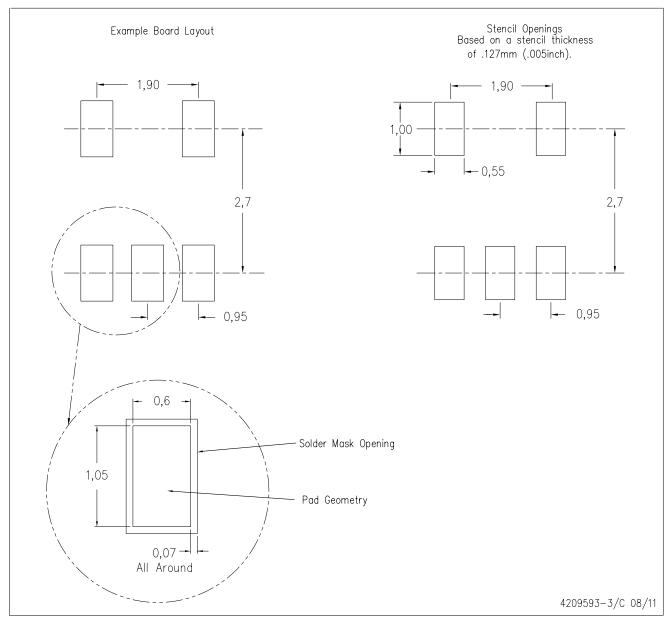


*All dimensions are nominal

7 III GITTIOTOTOTO GITO TTOTTIITIGI							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLVH431AQDBVRQ1	SOT-23	DBV	5	3000	203.0	203.0	35.0
TLVH431BQDBVRQ1	SOT-23	DBV	5	3000	203.0	203.0	35.0
TLVH431BQDBZRQ1	SOT-23	DBZ	3	3000	203.0	203.0	35.0

DBV (R-PDSO-G5)

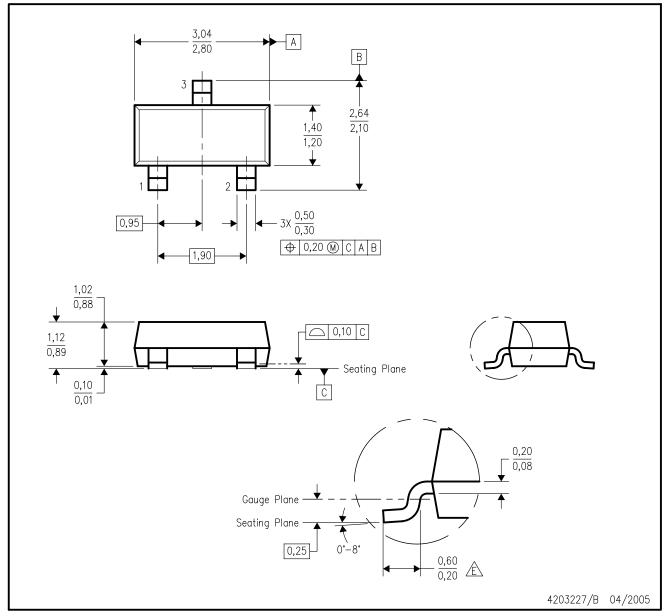
PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

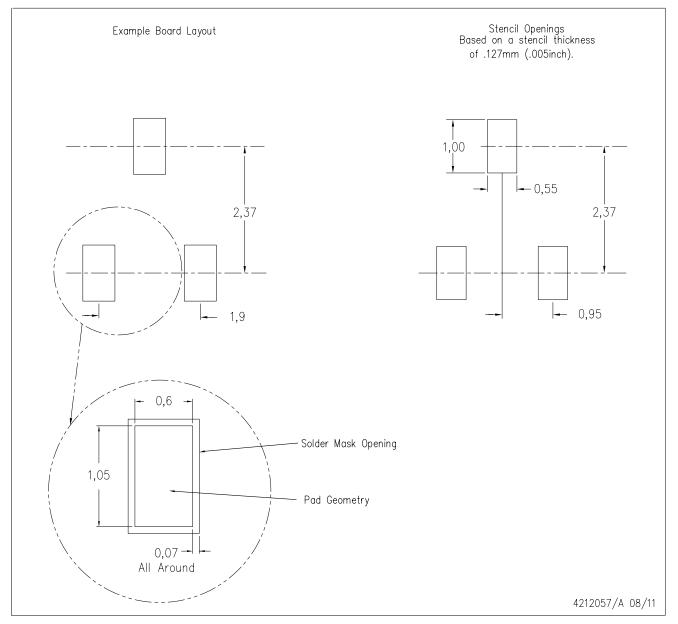
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DBZ (R-PDSO-G3)

PLASTIC SMALL-OUTLINE


NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Lead dimensions are inclusive of plating.
- D. Body dimensions are exclusive of mold flash and protrusion. Mold flash and protrusion not to exceed 0.25 per side.
- Falls within JEDEC TO-236 variation AB, except minimum foot length.

DBZ (R-PDSO-G3)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>