4.5-V TO 16-V INPUT, HIGH CURRENT, SYNCHRONOUS STEP DOWN THREE DC-DC CONVERTERS WITH INTEGRATED FET AND 2 USB SWITCHES

Check for Samples: TPS65258

FEATURES

- Wide Input Supply Voltage Range: 4.5 V-16 V
- 0.8-V, 1\% Accuracy Reference
- Continuous Loading: 3 A (Buck1), 2 A (Buck2 and 3)
- Maximum Current: 3.5 A (Buck 1), 2.5 A (Buck2 and 3)
- Synchronous Operation, 300-kHz - 2.2-MHz Switching Frequency Set By External Resistor
- External Enable Pins With Built-In Current Source for Easy Sequencing
- External Soft Start Pins
- Adjustable Cycle-by-Cycle Current Limit Set

by External Resistor

- Current-Mode Control With Simple Compensation Circuit
- Automatic Low Pulse Skipping (PSM) Power Mode, Allowing for an Output Ripple Better than 2\%
- Forced PWM Mode
- Support Pre-Biased Outputs
- Power Good Supervisor and Reset Generator
- 1-A, 2 USB Power Switches With Overcurrent and Thermal Protection
- Small, Thermally Efficient 40-Pin 6-mm x 6-mm RHA (QFN) package
- $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Junction Temperature Range

DESCRIPTION/ORDERING INFORMATION

TPS65258 is a power management IC with three step-down buck converters. Both high-side and low-side MOSFETs are integrated to provide fully synchronous conversion with higher efficiency. The converters are designed to simplify its application while giving the designer the option to optimize their usage according to the target application.
The converters can operate in $5-$, $9-$, 12 - or $15-\mathrm{V}$ systems. The output voltage can be set externally using a resistor divider to any value between 0.8 V and the input supply minus the resistive drops on the converter path. Each converter features enable pin that allows a delayed start-up for sequencing purposes, soft start pin that allows adjustable soft-start time by choosing the soft-start capacitor, and a current limit (RLIM) pin that enables designer to adjust current limit by selecting an external resistor and optimize the choice of inductor. All converters operate in 'hiccup mode': Once an over-current lasting more than 10 ms is sensed in any of the converters, they will shut down for 10 ms and then the start-up sequencing will be tried again. If the overload has been removed, the converter will ramp up and operate normally. If this is not the case the converter will see another over-current event and shuts down again repeating the cycle (hiccup) until the failure is cleared. If an overload condition lasts for less than 10 ms , only the relevant converter affected will shut-down and re-start and no global hiccup mode will occur.
The switching frequency of the converters is set by an external resistor connected to ROSC pin. The switching regulators are designed to operate from 300 kHz to 2.2 MHz . The converters operate with 180° phase between then to minimize the input filter requirements. All converters have peak current mode control which simplifies external frequency compensation.
The device has a built-in slope compensation ramp to prevent sub harmonic oscillations in peak current mode control. A traditional type II compensation network can stabilize the system and achieve fast transient response. Moreover, an optional capacitor in parallel with the upper resistor of the feedback divider provides one more zero and makes the crossover frequency over 100 kHz .
All converters feature an automatic low power pulse PFM skipping mode which improves efficiency during light loads and standby operation, while guaranteeing a very low output ripple, allowing for a value of less than 2% at low output voltages.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

The device incorporates an overvoltage transient protection circuit to minimize voltage overshoot. The OVP feature minimizes the output overshoot by implementing a circuit to compare the FB pin voltage to OVP threshold which is 109% of the internal voltage reference. If the FB pin voltage is greater than the OVTP threshold, the high side MOSFET is disabled preventing current from flowing to the output and minimizing output overshoot. When the FB voltage drops lower than the OVP lower threshold which is 107%, the high side MOSFET is allowed to turn on the next clock cycle.
TPS65258 features a supervisor circuit which monitors each buck's output and the PGOOD pin is asserted once sequencing is done. The PGOOD pin is an open drain output. The PGOOD pin is pulled low when any buck converter is pulled below 85% of the nominal output voltage. The PGOOD is pulled up when all converter outputs are more than 90% of its nominal output voltage. The default reset time is 100 ms . The polarity of the PGOOD is active high.
The 2 USB switches provide up to 1-A of current as required by downstream USB devices. When the output load exceeds the current-limit threshold or a short is present, the PMU limits the output current to a safe level by switching into a constant-current mode and pulling the over current logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal warning protection circuit shuts off the USB switch and allows the buck converters to carry on operating.

The device implements an internal thermal shutdown to protect itself if the junction temperature exceeds $160^{\circ} \mathrm{C}$. The thermal shutdown forces the device to stop operating when the junction temperature exceeds thermal trip threshold. Once the die temperature decreases below $140^{\circ} \mathrm{C}$, the device reinitiates the power up sequence. The thermal shutdown hysteresis is $20^{\circ} \mathrm{C}$.

ORDERING INFORMATION ${ }^{(1)}$

$\mathbf{T}_{\mathbf{A}}$	PACKAGE	(2)	PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$40-\mathrm{Pin}(\mathrm{QFN})-$ RHA	Reel of 2500	TPS65258RHAR	TPS65258

(1) For the most current packaging and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

FUNCTIONAL BLOCK DIAGRAM

TYPICAL APPLICATION

PIN OUT

TERMINAL FUNCTIONS

NAME	NO.	I/O	DESCRIPTION
RLIM3	1	I	Current limit setting for Buck3. Fit a resistor from this pin to ground to set the peak current limit on the output inductor.
SS3	2	I	Soft start pin for Buck3. Fit a small ceramic capacitor to this pin to set the converter soft start time.
COMP3	3	0	Compensation for Buck3. Fit a series RC circuit to this pin to complete the compensation circuit of this converter.
FB3	4	I	Feedback pin for Buck3. Connect a divider set to 0.8 V from the output of the converter to ground.
USB2_EN	5	1	Enable input, high turns on the switch
ROSC	6	I	Oscillator set. This resistor sets the frequency of internal autonomous clock.
FB1	7	I	Feedback pin for Buck1. Connect a divider set to 0.8 V from the output of the converter to ground.
COMP1	8	0	Compensation pin for Buck1. Fit a series RC circuit to this pin to complete the compensation circuit of this converter.
SS1	9	1	Soft-start pin for Buck1. Fit a small ceramic capacitor to this pin to set the converter soft-start time.
RLIM1	10	1	Current limit setting pin for Buck1. Fit a resistor from this pin to ground to set the peak current limit on the output inductor.
EN1	11	1	Enable pin for Buck1. A high signal on this pin enables the regulator Buck. For a delayed start-up add a small ceramic capacitor from this pin to ground.
BST1	12		Bootstrap capacitor for Buck1. Fit a 47-nF ceramic capacitor from this pin to the switching node.
VIN1	13	1	Input supply for Buck1. Fit a 10- F ceramic capacitor close to this pin.
LX1	14, 15	0	Switching node for Buck1
LX2	16, 17	O	Switching node for Buck2
VIN2	18	1	Input supply for Buck2. Fit a $10-\mu \mathrm{F}$ ceramic capacitor close to this pin.
BST2	19		Bootstrap capacitor for Buck2. Fit a 47-nF ceramic capacitor from this pin to the switching node.
EN2	20	1	Enable pin for Buck2. A high signal on this pin enables the regulator. For a delayed start-up add a small ceramic capacitor from this pin to ground.
RLIM2	21	1	Current limit setting pin for Buck2. Fit a resistor from this pin to ground to set the peak current limit on the output inductor.
SS2	22	1	Soft-start pin for Buck2. Fit a small ceramic capacitor to this pin to set the converter soft-start time.
COMP2	23	O	Compensation pin for Buck2. Fit a series RC circuit to this pin to complete the compensation circuit of this converter.
FB2	24	1	Feedback input for Buck2. Connect a divider set to 0.8 V from the output of the converter to ground.
F_PWM	25		Forces PWM operation in all converters when set high. If low converters will operate in automatic PFM/PWM mode.
USB2_nFAULT	26	1	USB2 fault flag output, open drain, active low. Asserted when overcurrent or over temperature condition is detected in the switch.
PGOOD	27	O	Power good. Open drain output asserted low after all converters and sequenced and within regulation. Polarity is factory selectable (active high default).
V7V	28	O	Internal supply. Connect a $10-\mu \mathrm{F}$ ceramic capacitor from this pin to ground.
V3V	29	O	Internal supply. Connect a $10-\mu \mathrm{F}$ ceramic capacitor from this pin to ground.
USB2_Vo	30	O	USB switch output
USB2_VIN	31	1	USB switch input supply
USB1_VIN	32	1	USB switch input supply
USB1_Vo	33	0	USB switch output

TERMINAL FUNCTIONS (continued)

NAME	NO.	I/O	DESCRIPTION
USB1_EN	34	I	Enable input, high turns on the switch
USB1_nFAULT	35	I	USB1 fault flag output, open drain, active low. Asserted when overcurrent or overtemperature condition is detected in the switch.
LX3	36,37	O	Switching node for Buck3
VIN3	38	I	Input supply for Buck3. Fit a 10- μ F ceramic capacitor close to this pin.
BST3	40	I	Bootstrap capacitor for Buck3. Fit a 47-nF ceramic capacitor from this pin to the switching node.
EN3	I	Enable pin for Buck3. A high signal on this pin enables the converter. For a delayed start-up add a small ceramic capacitor from this pin to ground.	
PowerPAD		PowerPAD. Connect to system ground for electrical and thermal connection.	

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted, all voltages are with respect to GND)

	Voltage range at VIN1,VIN2, VIN3, LX1, LX2, LX3	-0.3 to 18
	Voltage range at LX1, LX2, LX3 (maximum withstand voltage transient < 10 ns)	-3 to 18

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM
VIN	Input operating voltage	4.5	UNIT
T_{A}	Junction temperature	-40	16

ELECTROSTATIC DISCHARGE (ESD) PROTECTION

	MIN	MAX
Human body model (HBM)	2000	
Charge device model (CDM)	500	V

PACKAGE DISSIPATION RATINGS ${ }^{(1)}$

PACKAGE	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$	$\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$ POWER RATING (W)	$\mathbf{T}_{\mathrm{A}}=\mathbf{5 5}{ }^{\circ} \mathbf{C}$ POWER RATING (W)	$\mathbf{T}_{\mathrm{A}}=\mathbf{8 5} 5^{\circ} \mathbf{C}$ POWER RATING (W)
RHA	30	3.33	2.3	1.3

(1) Based on JEDEC 51.5 HIGH K environment measured on a $76.2 \times 114 \times 0.6-\mathrm{mm}$ board with the following layer arrangement:
(a) Top layer: $2 \mathrm{Oz} \mathrm{Cu}, 6.7 \%$ coverage
(b) Layer 2: $1 \mathrm{Oz} \mathrm{Cu}, 90 \%$ coverage
(c) Layer 3: $1 \mathrm{Oz} \mathrm{Cu}, 90 \%$ coverage
(d) Bottom layer: 2 Oz Cu, 20\% coverage

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
INPUT SUPPLY UVLO AND INTERNAL SUPPLY VOLTAGE					
$\mathrm{V}_{\text {IN }}$	Input voltage range		4.5	16	V
$\mathrm{IDD}_{\text {SDN }}$	Shutdown	EN pin = low for all converters	170		$\mu \mathrm{A}$
$\mathrm{IDD}_{\mathrm{Q}}$	Quiescent (push-button pull-up current not included)	Converters enabled, no load Buck1 $=1.2 \mathrm{~V}$ Buck2 $=1.8 \mathrm{~V}$ Buck3 $=3.3 \mathrm{~V}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}$ - PWM $=$ Low	600		$\mu \mathrm{A}$
	Quiescent, forced PWM	Converters enabled, no load F_PWM = High	18		mA
UVLO	$\mathrm{V}_{\text {IN }}$ under voltage lockout	Rising V_{IN}	4.22		V
		Falling V_{IN}	4.1		
UVLO ${ }_{\text {DEGLITCH }}$		Both edges	110		$\mu \mathrm{s}$
V3p3	Internal biasing supply		3.3		V
V7V	Internal biasing supply		6.25		V
V7V ${ }_{\text {UVLo }}$	UVLO for internal V7V rail	Rising V7V	3.8		V
		Falling V7V	3.6		
V7V ${ }_{\text {UVLO_DEGLITCH }}$		Falling edge	110		$\mu \mathrm{s}$

BUCK CONVERTERS (ENABLE CIRCUIT, CURRENT LIMIT, SOFT-START AND SWITCHING FREQUENCY)

FEEDBACK, REGULATION, OUTPUT STAGE

$V_{\text {FB }}$	Feedback voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1\%	0.8	1\%	V
		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ to 16 V	-2\%	0.8	2\%	
ton_min	Minimum on time (current sense blanking)				135	ns
LIMIT1	Peak inductor current limit range		0.75		4	A
Limit2	Peak inductor current limit range		0.75		3	A
Limitз	Peak inductor current limit range		0.75		3	A

MOSFET (BUCK 1)

H.S. Switch	On resistance of high side FET on CH 1	$25^{\circ} \mathrm{C}, \mathrm{BOOT}=6.5 \mathrm{~V}$	95	$\mathrm{~m} \Omega$
L.S. Switch	On resistance of low side FET on CH 1	$25^{\circ} \mathrm{C}, \mathrm{VIN}=12 \mathrm{~V}$	50	$\mathrm{~m} \Omega$
MOSFET (BUCK 2)	$25^{\circ} \mathrm{C}, \mathrm{BOOT}=6.5 \mathrm{~V}$	120	$\mathrm{~m} \Omega$	
H.S. Switch	On resistance of high side FET on CH 2	$25^{\circ} \mathrm{C}, \mathrm{VIN}=12 \mathrm{~V}$	80	$\mathrm{~m} \Omega$
L.S. Switch	On resistance of low side FET on CH 2			

ELECTRICAL CHARACTERISTICS (continued)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
MOSFET (BUCK 3)					
H.S. Switch	On resistance of high side FET on CH3	$25^{\circ} \mathrm{C}, \mathrm{BOOT}=6.5 \mathrm{~V}$	120		$m \Omega$
L.S. Switch	On resistance of low side FET on CH3	$25^{\circ} \mathrm{C}, \mathrm{VIN}=12 \mathrm{~V}$	80		$\mathrm{m} \Omega$
ERROR AMPLIFIER					
g_{M}	Error amplifier transconductance	$-2 \mu \mathrm{~A}<\mathrm{ICOMP}<2 \mu \mathrm{~A}$	130		$\mu \mho$
gmPS	COMP to ILX gm	$\mathrm{I}_{L X}=0.5 \mathrm{~A}$	10		A/V
POWER GOOD RESET GENERATOR					
VUV ${ }_{\text {BUCKX }}$	Threshold voltage for buck under voltage	Output falling	85		\%
		Output rising (PG will be asserted)	90		
tuV_deglitch	Deglitch time (both edges)		11		ms
ton_HICCUP	Hiccup mode ON time	VUV ${ }_{\text {BUCKX }}$ asserted	12		ms
toff_HICCUP	Hiccup mode OFF time	All converters disabled. Once toff_hiccup elapses, all converters will go through sequencing again.	20		ms
VOV ${ }_{\text {BUCKX }}$	Threshold voltage for buck over voltage	Output rising (high side FET will be forced off)	109		\%
		Output falling (high side FET will be allowed to switch)	107		
t_{RP}	minimum reset period	Measured after the later of Buck1 or Buck3 power-up successfully	100		ms
THERMAL SHUTDOWN					
$\mathrm{T}_{\text {TRIP }}$	Thermal shut down trip point	Rising temperature	160		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {HYST }}$	Thermal shut down hysteresis	Device re-starts	20		${ }^{\circ} \mathrm{C}$
TTRIP_DEGLITCH	Thermal shut down deglitch		110		$\mu \mathrm{s}$
USB SWITCHES					
VIN ${ }_{\text {USB }}$	USB input voltage range		3	6	V
VIH_USB_EN	USB_EN high level input voltage	$\mathrm{V} 3 \mathrm{p} 3=3.2-3.4 \mathrm{~V}, \mathrm{~V}_{\text {USB_EN }}$ rising	$\begin{array}{r} 0.66 x \\ \text { V3p3 } \end{array}$		V
VIL_USB_EN	USB_EN low level input voltage	$\mathrm{V} 3 \mathrm{p} 3=3.2-3.4 \mathrm{~V}$, V $\mathrm{USB}_{\text {_EN }}$ falling		$\begin{gathered} 0.33 x \\ \text { V3p3 } \end{gathered}$	V
$\mathrm{R}_{\text {DS_USB }}$	Static drain-source on-state resistance	$\begin{aligned} & \text { USB_VIN }=5 \mathrm{~V} \text { and } \mathrm{lo} _U S B= \\ & 0.5 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \end{aligned}$	120		$m \Omega$
ICS_USB	USB current limit	Increasing USB_Vo current di/dt<1 A/s	1.2		A
Kovercurrent	Overcurrent detection factor Ratio of $\mathrm{ILIM}_{\text {LTART }} / \mathrm{I}_{\text {CS_USB }}$	Increasing USB_Vo current di/dt< 1A/s VIN ${ }_{\text {USB }}=5 \mathrm{~V}$	1.5		
V USBx_nFAULT	USBx_nFAULT output voltage low	luSB_ILIM $=3 \mathrm{~mA}$		0.4	V
TCS_USB	USB over current fault deglitch	Fault assertion due to Over current protection	5		ms
TUSB_TRIP	USB thermal trip point	Rising temperature	130		${ }^{\circ} \mathrm{C}$
TUSB_HYST	USB thermal trip hysteresis	Falling temperature	20		${ }^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS

Load Regulation: Buck1 @ 1.2V, 1\% Resistor Feedback

Figure 1.

Load Regulation: Buck3 @ 3.3V, 1\% Resistor Feedback

Figure 3.
Current Limit Variation $25^{\circ} \mathrm{C}$,
RLIM1 $=100 \mathrm{k} \Omega$, RLIM2\&3 $\mathbf{= 1 2 0 k} \Omega$

Figure 5.

Load Regulation: Buck2 @ 1.8V, 1\% Resistor Feedback

Figure 2.

Buck1 Temp Variation @ 1.2V, 1\%Resistor $-40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$, Buck1 $=3 \mathrm{~A}$, Buck2 $=2 \mathrm{~A}$, Buck3 $=2 \mathrm{~A}$

Figure 4.
Buck1 1.2V Efficiency, Forced PWM
$\mathrm{L}=4.7 \mu \mathrm{H}, 20 \mathrm{~m} \Omega, \mathrm{f}_{\mathrm{Sw}}=500 \mathrm{KHz}$

Figure 6.

TYPICAL CHARACTERISTICS (continued)

Buck1 1.2V Efficiency, Forced PWM and PFM $\mathrm{L}=4.7 \mu \mathrm{H}, 20 \mathrm{~m} \Omega, \mathrm{f} \mathrm{sw}=500 \mathrm{KHz}$

Figure 7.

Buck2 1.8V Efficiency, Forced PWM and PFM $\mathrm{L}=4.7 \mu \mathrm{H}, 20 \mathrm{~m} \Omega, \mathrm{f}_{\mathrm{SW}}=500 \mathrm{KHz}$

Figure 9.

Buck3 3.3V Efficiency, Forced PWM and PFM $\mathrm{L}=4.7 \mu \mathrm{H}, 20 \mathrm{~m} \Omega, \mathrm{f}_{\mathrm{SW}}=500 \mathrm{KHz}$

Figure 11.

Buck2 1.8V Efficiency, Forced PWM
$\mathrm{L}=4.7 \mu \mathrm{H}, 20 \mathrm{~m} \Omega, \mathrm{f}_{\mathrm{Sw}}=500 \mathrm{KHz}$

Figure 8.

Buck3 3.3V Efficiency, Forced PWM
$\mathrm{L}=4.7 \mu \mathrm{H}, 20 \mathrm{~m} \Omega, \mathrm{f}_{\mathrm{Sw}}=500 \mathrm{KHz}$

Figure 10.

Power-Up All Converters, No Load $\mathrm{V}_{\mathrm{IN}}=\mathbf{1 2 V}$ (Green)

Figure 12.

TYPICAL CHARACTERISTICS (continued)
Power-Up All Converters and PGOOD (Green), No Load

Figure 13.

Ripple $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Buck1 $=3 \mathrm{~A}$, Buck2 $=2 \mathrm{~A}$, Buck3 $=2 \mathrm{~A}$

Figure 15.

Ripple $\mathrm{T}_{\mathrm{A}}=10^{\circ} \mathrm{C}$, Buck1 $=3 \mathrm{~A}$, Buck2 $=2 \mathrm{~A}$, Buck3 $=2 \mathrm{~A}$

Figure 17.

Detail of Start-Up 4.7nF Fitted to All Enable Pins

Figure 14.

Ripple $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$, Buck1 $=3 \mathrm{~A}$, Buck2 $=2 \mathrm{~A}$, Buck3 $=2 \mathrm{~A}$

Figure 16.

Ripple $T_{A}=40^{\circ} \mathrm{C}$, Buck1 $=3 \mathrm{~A}$, Buck2 $=2 \mathrm{~A}$, Buck3 $=2 \mathrm{~A}$

Figure 18.

TYPICAL CHARACTERISTICS (continued)

Transient Response Buck1
$1.2 \mathrm{~V}, 1-3 \mathrm{~A}$ Step, $\mathrm{Co}=22 \mu \mathrm{~F}, \mathrm{~L}=4.7 \mu \mathrm{H}, \mathrm{f}_{\mathrm{Sw}}=500 \mathrm{KHz}$

Figure 19.
Buck3 3.3V Efficiency Measured With $\mathrm{L}=4.7 \mu \mathrm{H}, 20 \mathrm{~m} \Omega$, $\mathrm{f}_{\mathrm{sw}}=500 \mathrm{kHz}$

Figure 21.
PFM/PWM Transition (Pin 25 Pulled High)

Figure 23.

Transient Response Buck2
$1.8 \mathrm{~V}, 1-2 \mathrm{~A}$ Step, $\mathrm{Co}=22 \mu \mathrm{~F}, \mathrm{~L}=4.7 \mu \mathrm{H}, \mathrm{f}_{\mathrm{SW}}=500 \mathrm{KHz}$

Figure 20.

PFM Operation 1.2V, 1.8V, 3.3V

Figure 22.
PFM/PWM Transition (Pin 25 Pulled Low)

Figure 24.

TYPICAL CHARACTERISTICS (continued)

Buck1 Dynamic Transition from PFM to PWM
$4.7 \mu \mathrm{H}, 44 \mu \mathrm{~F}, 500 \mathrm{kHz}$

Figure 25.

Buck3 Dynamic Transition from PFM to PWM
$4.7 \mu \mathrm{H}, 22 \mu \mathrm{~F}, 500 \mathrm{kHz}$

Figure 27.

USB Switch Start-Up No Load

Figure 29.

Buck2 Dynamic Transition from PFM to PWM $4.7 \mu \mathrm{H}, 44 \mu \mathrm{~F}, 500 \mathrm{kHz}$

Figure 26.

USB Switch Start-Up No Load

Figure 28.

USB Current Limit Operation (3.3 V)

Figure 30.

TYPICAL CHARACTERISTICS (continued)

USB Current Limit Recovery (3.3 V)

Figure 31.
USB Current Limit Recovery (5 V)

Figure 33.

EVM Layout

Figure 35.

USB Current Limit Operation (5 V)

Figure 32.

Bucks Operation (Top 3 Traces) and USB Alarm Operation

Figure 34.
$\mathrm{T}_{\mathrm{A}}=25^{\circ}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$
$B 1=3 A, B 2=2 A, B 3=2 A$

Figure 36.

TYPICAL CHARACTERISTICS (continued)

Figure 37.
Figure 38.

DETAILED DESCRIPTION

Adjustable Switching Frequency

To select the internal switching frequency, connect a resistor from ROSC to ground. Figure 39 shows the required resistance for a given switching frequency.

Figure 39. ROSC vs Switching Frequency

$$
\begin{equation*}
R_{\text {osc }}(k \Omega)=174 \bullet f_{S W}^{-1.122} \tag{1}
\end{equation*}
$$

Output Inductor Selection

To calculate the value of the output inductor, use Equation 2.
$L o=\frac{V \text { in }- \text { Vout }}{I o \cdot K_{\text {ind }}} \cdot \frac{\text { Vout }}{V \text { in } \cdot f s w}$
$\mathrm{K}_{\text {ind }}$ is a coefficient that represents the amount of inductor ripple current relative to the maximum output current. In general, $\mathrm{K}_{\text {ind }}$ is normally from 0.1 to 0.3 for the majority of applications. A value of 0.1 will improve the efficiency at light load, while a value of 0.3 will provide the lowest possible cost solution. The ripple current is:
Iripple $=\frac{\text { Vin }- \text { Vout }}{\text { Lo }} \cdot \frac{\text { Vout }}{\text { Vin } \cdot f s w}$

Output Capacitor

There are two primary considerations for selecting the value of the output capacitor. The output capacitors are selected to meet load transient and output ripple's requirements. If a minimum transient specification is required use the following equation:

$$
\begin{equation*}
C o>\frac{\Delta I_{\text {OUT }}{ }^{2} \cdot L_{o}}{V_{\text {out }} \cdot \Delta V o u t} \tag{4}
\end{equation*}
$$

The following equation calculates the minimum output capacitance needed to meet the output voltage ripple specification.

$$
\begin{equation*}
C o>\frac{1}{8 \cdot f s w} \cdot \frac{1}{\frac{V_{\text {RIPPLE }}}{V_{\text {RIPPLE }}}} \tag{5}
\end{equation*}
$$

Where $\mathrm{f}_{\text {SW }}$ is the switching frequency, $\mathrm{V}_{\text {RIPPLE }}$ is the maximum allowable output voltage ripple, and $\mathrm{V}_{\text {RIPPLE }}$ is the inductor ripple current.

Input Capacitor

A minimum $10-\mu \mathrm{F}$ X7R/X5R ceramic input capacitor is recommended to be added between VIN and GND of each converter. The input capacitor must handle the RMS ripple current shown in the following equation.
Icirms $=$ Iout $\cdot \sqrt{\frac{\text { Vout }}{\text { Vin } \min } \cdot \frac{(\text { Vin } \min -\text { Vout })}{V i n \min }}$

Bootstrap Capacitor

The device has two integrated boot regulators and requires a small ceramic capacitor between the BST and LX pins to provide the gate drive voltage for the high side MOSFET. The value of the ceramic capacitor should be $0.047 \mu \mathrm{~F}$. A ceramic capacitor with an X7R or X5R grade dielectric is recommended because of the stable characteristics over temperature and voltage.

Soft-Start Time

The device has an internal pull-up current source of $5 \mu \mathrm{~A}$ that charges an external soft-start capacitor to implement a slow start time. Equation 7 shows how to select a soft-start capacitor based on an expected slow start time. The voltage reference $\left(\mathrm{V}_{\mathrm{REF}}\right)$ is 0.8 V and the soft-start charge current $\left(\mathrm{I}_{\mathrm{ss}}\right)$ is $5 \mu \mathrm{~A}$. The soft-start circuit requires 1 nF per around $167 \mu \mathrm{~s}$ to be connected at the SS pin. A 0.8 -ms soft-start time is implemented for all converters fitting 4.7 nF to the relevant SS pin.

$$
\begin{equation*}
T_{s s}(m s)=V_{R E F}(V) \cdot\left(\frac{C_{s s}(n F)}{I_{s s}(\mu A)}\right) \tag{7}
\end{equation*}
$$

The Power Good circuit for the bucks has a 10 -ms watchdog. Therefore the soft-start time should be lower than this value. It is recommended not to exceed 5 ms .

Delayed Start-Up

If a delayed start-up is required on any of the buck converters fit a ceramic capacitor to the ENx pins. The delay added is $\sim 1.67 \mathrm{~ms}$ per nF connected to the pin. Note that the EN pins have a weak $1-\mathrm{M} \Omega$ pull-up to the 3 V 3 rail.

Figure 40. Delayed Start-Up

Out-of-Phase Operation

In order to reduce input ripple current, Buck1 and Buck2 operate 180° out-of-phase. This enables the system having less input ripple, then to lower component cost, save board space and reduce EMI.

Adjusting the Output Voltage

The output voltage is set with a resistor divider from the output node to the FB pin. It is recommended to use 1% tolerance or better divider resistors. In order to improve efficiency at light load, start with a value close to $40 \mathrm{k} \Omega$ for the R1 resistor and use Equation 8 to calculate R2.

$$
\begin{equation*}
R 2=R 1 \cdot\left(\frac{0.8 V}{V_{O}-0.8 V}\right) \tag{8}
\end{equation*}
$$

Figure 41. Voltage Divider Circuit

Loop Compensation

TPS65258 is a current mode control DC/DC converter. The error amplifier is a transconductance amplifier with a g_{M} of $130 \mu \mathrm{~A} / \mathrm{V}$. A typical compensation circuit could be type II (R_{c} and C_{c}) to have a phase margin between 60° and 90°, or type III (R_{c} and C_{c} and $\mathrm{C}_{\text {ff }}$ to improve the converter transient response. $\mathrm{C}_{\text {Roll }}$ adds a high frequency pole to attenuate high-frequency noise when needed. It may also prevent noise coupling from other rails if there is possibility of cross coupling in between rails when layout is very compact.

Figure 42. Loop Compensation Scheme

To calculate the external compensation components follow the following steps:

	TYPE II CIRCUIT	TYPE III CIRCUIT
Select switching frequency that is appropriate for application depending on L, C sizes, output ripple, EMI concerns and etc. Switching frequencies around 500 kHz yield best trade off between performance and cost. When using smaller L and C, switching frequency can be increased. To optimize efficiency, switching frequency can be lowered.		Use type III circuit for switching frequencies higher than 500 kHz .
Select cross over frequency $\left(f_{c}\right)$ to be at least $1 / 5$ to $1 / 10$ of switching frequency (f_{s}).	Suggested $\mathrm{f}_{\mathrm{c}}=\mathrm{f}_{\mathrm{s}} / 10$	Suggested $\mathrm{f}_{\mathrm{c}}=\mathrm{f}_{\mathrm{s}} / 10$
Set and calculate R_{c}.	$R_{C}=\frac{2 \pi \cdot f c \cdot V o \cdot C o}{g_{M} \cdot V r e f \cdot g m_{p s}}$	$R_{C}=\frac{2 \pi \cdot f c \cdot V o \cdot C o}{g_{M} \cdot V r e f \cdot g m_{p s}}$
Calculate C_{c} by placing a compensation zero at or before the converter dominant pole $f p=\frac{1}{C_{O} \cdot R_{L} \cdot 2 \pi}$	$C_{c}=\frac{R_{L} \cdot C o}{R_{c}}$	$C_{c}=\frac{R_{L} \cdot C o}{R_{c}}$
Add $\mathrm{C}_{\text {Roll }}$ if needed to remove large signal coupling to high impedance CMP node. Make sure that $f p_{\text {Roll }}=\frac{1}{2 \cdot \pi \cdot R_{C} \cdot C_{\text {Roll }}}$ is at least twice the cross over frequency.	$C_{R o l l}=\frac{\operatorname{Re} s r \cdot C o}{R_{C}}$	$C_{R o l l}=\frac{\operatorname{Re} s r \cdot C o}{R_{C}}$
Calculate C_{ff} compensation zero at low frequency to boost the phase margin at the crossover frequency. Make sure that the zero frequency $\left(\mathrm{f}_{\mathrm{ff}}\right)$ is smaller than equivalent soft-start frequency $\left(1 / T_{\mathrm{ss}}\right)$.	NA	$C_{f f}=\frac{1}{2 \cdot \pi \cdot f z_{f f} \cdot R_{1}}$

Slope Compensation

The device has a built-in slope compensation ramp. The slope compensation can prevent sub harmonic oscillations in peak current mode control.

Power Good

The PGOOD pin is an open drain output. The PGOOD pin is pulled low when any buck converter is pulled below 85% of the nominal output voltage. The PGOOD is pulled up when both buck converters' outputs are more than 90% of its nominal output voltage.
The default reset time is 100 ms . The polarity of the PGOOD is active high.

Current Limit Protection

The TPS65258 current limit trip is set by the following formulae:

All converters operate in hiccup mode: Once an over-current lasting more than 10 ms is sensed in any of the converters, they will shut down for 10 ms and then the start-up sequencing will be tried again. If the overload has been removed, the converter will ramp up and operate normally. If this is not the case the converter will see another over-current event and shuts-down again repeating the cycle (hiccup) until the failure is cleared.

If an overload condition lasts for less than 10 ms , only the relevant converter affected will shut-down and re-start and no global hiccup mode will occur.

Overvoltage Transient Protection

The device incorporates an overvoltage transient protection (OVP) circuit to minimize voltage overshoot. The OVP feature minimizes the output overshoot by implementing a circuit to compare the FB pin voltage to OVTP threshold which is 109% of the internal voltage reference. If the FB pin voltage is greater than the OVTP threshold, the high side MOSFET is disabled preventing current from flowing to the output and minimizing output overshoot. When the FB voltage drops lower than the OVTP threshold which is 107%, the high side MOSFET is allowed to turn on the next clock cycle.

Low Power/Pulse Skipping Operation

When a buck synchronous converter operates at light load or standby conditions, the switching losses are the dominant source of power losses. Under these load conditions, TPS65258 uses a pulse skipping modulation technique to reduce the switching losses by keeping the power transistors in the off-state for several switching cycles, while maintaining a regulated output voltage. Figure 43 shows the output voltage and load plus the inductor current.

Figure 43. Low Power/Pulse Skipping
During the burst mode, the converter continuously charges up the output capacitor until the output voltage reaches a certain limit threshold. The operation of the converter in this interval is equivalent to the peak inductor current mode control. In each switch period, the main switch is turned on until the inductor current reaches the peak current limit threshold. As the load increases the number of pulses increases to make sure that the output voltage stays within regulation limits. When the load is very light the low power controller has a zero crossing detector to allow the low side mosfet to operate even in light load conditions. The transistor is not disabled at light loads. A zero crossing detection circuit will disable it when inductor current reverses. During the whole process the body diode does not conduct but is used as blocking diode only.

During the skipping interval, the upper and lower transistors are turned off and the converter stays in idle mode. The output capacitors are discharged by the load current until the moment when the output voltage drops to a low threshold.
The choice of output filter will influence the performance of the low power circuit. The maximum ripple during low power mode can be calculated as:
$V_{\text {OUT_RIPPLE }}=\frac{K_{\text {RIP }} T_{S}}{C_{\text {OUT }}}$
Where $\mathrm{K}_{\text {RIP }}$ is 1.4 for Buck1 and 0.7 for Buck2 and Buck3. TS can be calculated as:
$T_{S}=\frac{0.35}{\left[\left(\frac{V_{I N}-V_{\text {OUT }}}{L}\right) \frac{V_{\text {OUT }}}{V_{I N}}\right]}$

USB Switches

The USB switches are enabled (active high) with the USB_ENx pin. The switches have a typical resistance of $120 \mathrm{~m} \Omega$ and has a fold-back current limit that is typically $\overline{2} 5 \%$ lower than the overcurrent detection point. If a continuous short-circuit condition is applied to one USB switch output, the USB switches will shut-down once its temperature reaches $130^{\circ} \mathrm{C}$, allowing for the buck converters to operate unaffected. Once the USB switch cools down it will restart automatically.

Figure 44. USB Switches
The USB switches are single sided without back-fed protection but the 2 USB switches of TPS65258 can be configured as a back to back switch.

Figure 45. Back to Back Switch

Power Dissipation

The total power dissipation inside TPS65258 should not to exceed the maximum allowable junction temperature of $125^{\circ} \mathrm{C}$. The maximum allowable power dissipation is a function of the thermal resistance of the package (R_{JA}) and ambient temperature. To calculate the temperature inside the device under continuous loading use the following procedure:

1. Define the set voltage for each converter.
2. Define the continuous loading on each converter. Make sure do not exceed the converter maximum loading..
3. Determine from the graphs below the expected losses in watts per converter inside the device. The losses depend on the input supply, the selected switching frequency, the output voltage and the converter chosen.

Figure 46. Power Dissipation Curves
4. Add additional losses due to the operation of the USB switches.
5. To calculate the maximum temperature inside the IC use the following formula:
$\mathrm{T}_{\text {HOt_SPOT }}=\mathrm{T}_{\mathrm{A}}+\mathrm{P}_{\mathrm{DIS}} \times \Theta_{\mathrm{JA}}$
Where:
T_{A} is the ambient temperature
$P_{\text {DIS }}$ is the sum of losses in all converters
Θ_{JA} is the junction to ambient thermal impedance of the device and it is heavily dependant on board layout

Thermal Shutdown

The device implements an internal thermal shutdown to protect itself if the junction temperature exceeds $160^{\circ} \mathrm{C}$. The thermal shutdown forces the device to stop switching when the junction temperature exceeds thermal trip threshold. Once the die temperature decreases below $140^{\circ} \mathrm{C}$, the device reinitiates the power up sequence. The thermal shutdown hysteresis is $20^{\circ} \mathrm{C}$.

3.3-V and 6.5 LDO Regulators

The following ceramic capacitor (X7R/X5R) should be connected as close as possible to the described pins:

- $4.7 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ for V 7 V pin 28
- $3.3 \mu \mathrm{~F}$ or larger for V3V pin 29

Layout Recommendation

Layout is a critical portion of PMIC designs.

- Place tracing for output voltage and LX on the top layer and an inner power plane for VIN.
- Fit also on the top layer connections for the remaining pins of the PMIC and a large top side area filled with ground.
- The top layer ground area should be connected to the internal ground layer(s) using vias at the input bypass capacitor, the output filter capacitor and directly under the TPS65258 device to provide a thermal path from the PowerPad land to ground.
- For operation at full rated load, the top side ground area together with the internal ground plane, must provide adequate heat dissipating area.
- There are several signals paths that conduct fast changing currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise or degrade the power supplies performance. To help eliminate these problems, the VIN pin should be bypassed to ground with a low ESR ceramic bypass capacitor with X5R or X7R dielectric. Care should be taken to minimize the loop area formed by the bypass capacitor connections, the VIN pins, and the ground connections. Since the LX connection is the switching node, the output inductor should be located close to the LX pins, and the area of the PCB conductor minimized to prevent excessive capacitive coupling.
- The output filter capacitor ground should use the same power ground trace as the VIN input bypass capacitor. Try to minimize this conductor length while maintaining adequate width.
- The compensation should be as close as possible to the CMPx pins. The CMPx and ROSC pins are sensitive to noise so the components associated to these pins should be located as close as possible to the IC and routed with minimal lengths of trace.

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/ Ball Finish	MSL Peak Temp ${ }^{(3)}$	Samples (Requires Login)
TPS65258RHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	
TPS65258RHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	

The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs
IFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{2}$) Eco Plan-The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
mportant Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

W1

TAPE AND REEL INFORMATION
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width ($\mathbf{(m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TPS65258RHAR	VQFN	RHA	40	2500	330.0	16.4	6.3	6.3	1.5	12.0	16.0	Q2
TPS65258RHAT	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.5	12.0	16.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS65258RHAR	VQFN	RHA	40	2500	367.0	367.0	38.0
TPS65258RHAT	VQFN	RHA	40	250	210.0	185.0	35.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) Package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Package complies to JEDEC MO-220 variation VJJD-2.

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View
Exposed Thermal Pad Dimensions

NOTES: A. All linear dimensions are in millimeters

RHA (S-PVQFN-N40)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

TEXAS
INSTRUMENTS
www.ti.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	$\underline{\text { microcontroller.ti.com }}$
RFID	www.ti-rfid.com
OMAP Mobile Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	$\underline{\text { www.ti.com/computers }}$
Consumer Electronics	$\underline{\text { www.ti.com/consumer-apps }}$
Energy and Lighting	$\underline{\text { www.ti.com/energy }}$
Industrial	$\underline{\text { www.ti.com/industrial }}$
Medical	$\underline{\text { www.ti.com/medical }}$
Security	$\underline{\text { www.ti.com/security }}$
Space, Avionics and Defense	www.ti.com/video
Video and Imaging	$\underline{\text { e2e.ti.com }}$
TI E2E Community	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

