www.ti.com

LM98725 3 Channel, 16-Bit, 81 MSPS Analog Front End with LVDS/CMOS Output, Integrated CCD/CIS Sensor Timing Generator and Spread Spectrum Clock Generation

Check for Samples: LM98725

FEATURES

- LVDS/CMOS Outputs
- LVDS/CMOS/Crystal Clock Source with PLL Multiplication
- Integrated Flexible Spread Spectrum Clock Generation
- CDS or S/H Processing for CCD or CIS Sensors
- Independent Gain/Offset Correction for Each Channel
- Automatic per-Channel Gain and Offset Calibration
- Programmable Input Clamp Voltage
- Flexible CCD/CIS Sensor Timing Generator

KEY SPECIFICATIONS

- Maximum Input Level
 - 1.2 or 2.4 Volt Modes
 - (Both with + or Polarity Option)
- ADC Resolution: 16-Bit
- ADC Sampling Rate: 81 MSPS
- INL: +17/- 28 LSB (typ)
- Channel Sampling Rate: 30/30/27 MSPS
- PGA Gain Steps: 256 StepsPGA Gain Range: 0.62 to 8.3x
- Analog DAC Resolution: +/-9 Bits
- Analog DAC Range: +/-307mV or +/-614mV
- Digital DAC Resolution: +/-6 Bits
- Digital DAC Range: -2048 LSB to + 2016 LSB
- SNR: -74dB (@0dB PGA Gain)
- Power Dissipation: 755mW (LVDS)
- Operating Temp: 0 to 70°C
- Supply Voltage: 3.3V Nominal (3.0V to 3.6V

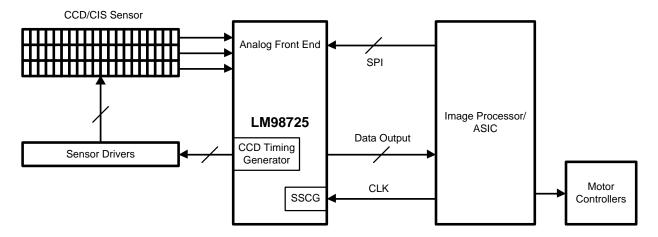
Range)

APPLICATIONS

- Multi-Function Peripherals
- High-speed Currency/Check Scanners
- Flatbed or Handheld Color Scanners
- High-speed Document Scanners

DESCRIPTION

The LM98725 is a fully integrated, high performance 16-Bit, 81 MSPS signal processing solution for digital color copiers, scanners, and other image processing applications. High-speed signal throughput achieved with an innovative architecture utilizing Correlated Double Sampling (CDS), employed with CCD arrays, or Sample and Hold (S/H) inputs (for higher speed CCD or CMOS image sensors). The signal paths utilize 8 bit Programmable Gain Amplifiers (PGA), a +/-9-Bit offset correction DAC and independently controlled Digital Black Level correction loops for each input. The PGA and offset DAC are programmed independently allowing unique values of gain and offset for each of the three analog inputs. The signals are then routed to a 81MHz high performance analog-to-digital converter (ADC). The differential processing channel exceptional noise immunity, having a very low noise floor of -74dB. The 16-bit ADC has excellent dynamic performance making the LM98725 transparent in the image reproduction chain.


A very flexible integrated Spread Spectrum Clock Generation (SSCG) modulator is included to assist with EM compliance and reduce system costs.

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

System Block Diagram

LM98725 Overall Chip Block Diagram

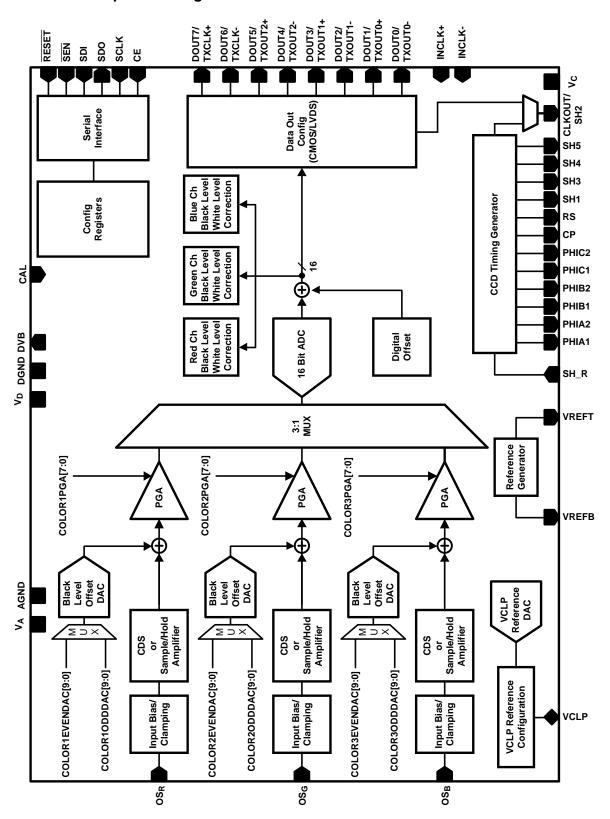


Figure 1. Chip Block Diagram

LM98725 Pin Out Diagram

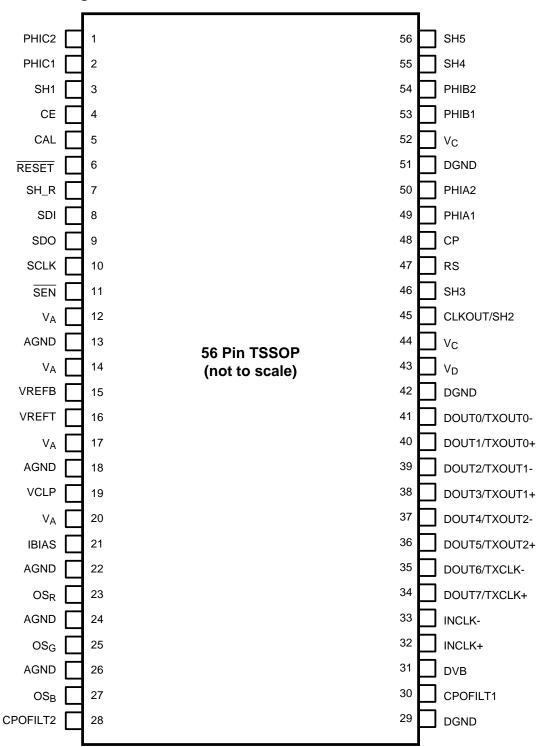


Figure 2. TSSOP Package See Package Number DGG0056A

Typical Application Diagram

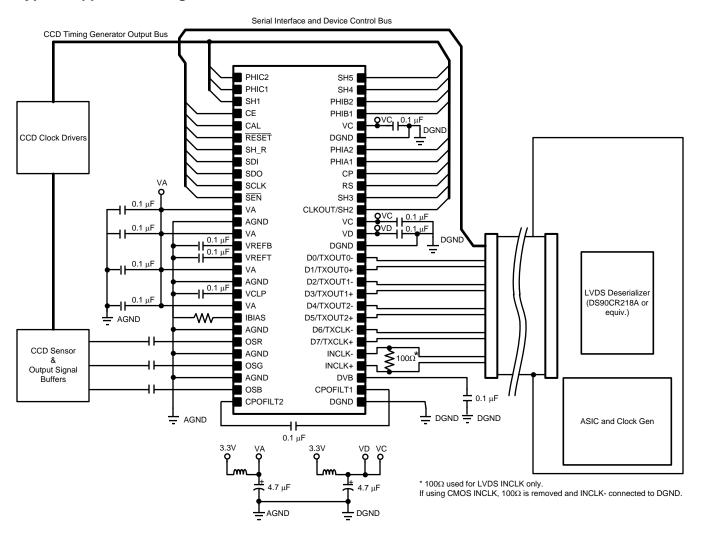


Figure 3. Typical Application Diagram

Pin Descriptions

	T	1	1	ı	Pin Description	15				
Pin	Name	I/O	Тур	Res		Description				
1	PHIC2	0	D	PU	Configurable high speed sens	sor timing output.				
2	PHIC1	0	D	PD	Configurable high speed sens	sor timing output.				
3	SH1	0	D	PU	Configurable low speed sensor	or timing output.				
4	CE	I	D		Chip Serial Interface Address	Setting Input				
					CE Level	Address				
					V_D	01				
					Float	10				
					DGND	00				
5	CAL	I	D	PD	Initiate calibration sequence. I	Leave unconnected or tie to DGND if unused.				
6	RESET	I	D	PU	Active-low master reset. NC v	when function not being used.				
7	SH_R	ı	D	PD	External request for an SH int	erval.				
8	SDI	ı	D	PD	Serial Interface Data Input.					
9	SDO	0	D		Serial Interface Data Output.					
10	SCLK	ı	D	PD	Serial Interface shift register of	clock.				
11	SEN	I	D	PU	Active-low chip enable for the	Serial Interface.				
12	V _A		Р		Analog power supply. Bypass	voltage source with 4.7µF and pin with 0.1µF to AGND.				
13	AGND		Р		Analog ground return.					
14	V _A		Р			voltage source with 4.7μF and pin with 0.1μF to AGND.				
15	VREFB	0	Α		Bottom of ADC reference. By	pass with a 0.1µF capacitor to ground.				
16	VREFT	0	Α			s with a 0.1µF capacitor to ground.				
17	V _A		Р		Analog power supply. Bypass	voltage source with 4.7µF and pin with 0.1µF to AGND.				
18	AGND		Р		Analog ground return.					
19	VCLP	Ю	Α		Input Clamp Voltage. Normally bypassed with a 0.1µF, and a 4.7µF capacitor to AGND.					
					An external reference voltage	may be applied to this pin.				
20	V _A		Р		Analog power supply. Bypass	voltage source with 4.7μF and pin with 0.1μF to AGND.				
21	IBIAS	0	Α		Bias setting pin. Connect a 9.	0 kOhm 1% resistor to AGND.				
22	AGND		Р		Analog ground return.					
23	OS _R	I	Α		Analog input signal. Typically	sensor Red output AC-coupled thru a capacitor.				
24	AGND		Р		Analog ground return.					
25	OS _G	I	Α		Analog input signal. Typically	sensor Green output AC-coupled thru a capacitor.				
26	AGND		Р		Analog ground return.					
27	OS _B	I	Α		Analog input signal. Typically	sensor Blue output AC-coupled thru a capacitor.				
28	CPOFILT2		Α		Charge Pump Filter Capacitor CPOFILT1.	r. Bypass this supply pin with a 0.1μF capacitor to				
29	DGND		Р		Digital ground return.					
30	CPOFILT1		Α		Charge Pump Filter Capacitor CPOFILT2.	r. Bypass this supply pin with a 0.1µF capacitor to				
31	DVB	0	D		Digital Core Voltage bypass.	Not an input. Bypass with 0.1µF capacitor to DGND.				
32	INCLK+	I	D			out for LVDS clocks or CMOS clock input. CMOS clock is at DGND, otherwise clock is configured for LVDS operation.				
33	INCLK-	I	D		Clock Input. Inverting input for	r LVDS clocks, connect to DGND for CMOS clock.				
34	DOUT7/	0	D		Bit 7 of the digital video output	t bus in CMOS Mode, LVDS Frame Clock+ in LVDS Mode.				
	TXCLK+									
35	DOUT6/	0	D		Bit 6 of the digital video outpu	t bus in CMOS Mode, LVDS Frame Clock- in LVDS Mode.				
	TXCLK-				2.1 5 5. 2.5 Signal Mass super sus in Sines Wood, EVBS Frame Glock in EVBS Wood.					
36	DOUT5/	0	D		Bit 5 of the digital video output	t bus in CMOS Mode, LVDS Data Out2+ in LVDS Mode.				
	TXOUT2+									
37	DOUT4/	0	D		Bit 4 of the digital video output	tt bus in CMOS Mode, LVDS Data Out2- in LVDS Mode.				
	TXOUT2-									

Submit Documentation Feedback

Pin Descriptions (continued)

Pin	Name	I/O	Тур	Res	Description
38	DOUT3/	0	D		Bit 3 of the digital video output bus in CMOS Mode, LVDS Data Out1+ in LVDS Mode.
	TXOUT1+				
39	DOUT2/	0	D		Bit 2 of the digital video output bus in CMOS Mode, LVDS Data Out1- in LVDS Mode.
	TXOUT1-				
40	DOUT1/	0	D		Bit 1 of the digital video output bus in CMOS Mode, LVDS Data Out0+ in LVDS Mode.
	TXOUT0+				
41	DOUT0/	0	D		Bit 0 of the digital video output bus in CMOS Mode, LVDS Data Out0- in LVDS Mode.
	TXOUT0-				
42	DGND	0	D	PD	Configurable sensor control output.
43	V _D		Р		Power supply for the digital circuits. Bypass this supply pin with 0.1µF capacitor. A single 4.7µF capacitor should be used between the supply and the VD, VR and VC pins.
44	V _C		Р		Power supply for the sensor control outputs. Bypass this supply pin with 0.1µF capacitor.
45	CLKOUT/SH2	0	D		Output clock for registering output data when using CMOS outputs, or a configurable low speed sensor timing output.
46	SH3	0	D		Configurable low speed sensor timing output.
47	RS	0	D		Configurable high speed sensor timing output.
48	СР	0	D		Configurable high speed sensor timing output.
49	PHIA1	0	D		Configurable high speed sensor timing output.
50	PHIA2	0	D		Configurable high speed sensor timing output.
51	DGND		Р		Digital ground return.
52	V _C		Р		Power supply for the sensor control outputs. Bypass this supply pin with 0.1µF capacitor.
53	PHIB1	0	D		Configurable high speed sensor timing output.
54	PHIB2	0	D		Configurable high speed sensor timing output.
55	SH4	0	D		Configurable low speed sensor timing output.
56	SH5	0	D		Configurable low speed sensor timing output.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)(3)

Supply Voltage (VA,VR,VD,VC)		4.2\
Voltage on Any Input Pin(Not to exceed	4.2V)	-0.3V to (VA + 0.3V)
Voltage on Any Output Pin(execpt DVB	and not to exceed 4.2V)	-0.3V to (VA + 0.3V)
DVB Output Pin Voltage		2.0V
Input Current at any pin other than Sup	ply Pins ⁽⁴⁾	±25 mA
Package Input Current (except Supply I	Pins) ⁽⁴⁾	±50 mA
Maximum Junction Temperature (TA)		150°C
Thermal Resistance (θ _{JA})		<66°C/W
Package Dissipation at T _A = 25°C ⁽⁵⁾		>1.89W
FCD Dating (6)	Human Body Model	2500V
ESD Rating ⁽⁶⁾	Machine Model	250V
Storage Temperature		−65°C to +150°C
Soldering process must comply with Te	xas Instruments' Reflow Temperature Profile specifications	s. Refer to www.ti.com/packaging. ⁽⁷⁾

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Operation of the device beyond the Operating Ratings is not recommended.
- (2) All voltages are measured with respect to AGND = DGND = 0V, unless otherwise specified.
- (3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
- (4) When the input voltage (V_{IN}) at any pin exceeds the power supplies (V_{IN} < GND or V_{IN} > V_A or V_D), the current at that pin should be limited to 25 mA. The 50 mA maximum package input current rating limits the number of pins that can simultaneously safely exceed the power supplies with an input current of 25 mA to two.
- (5) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX}, θ_{JA} and the ambient temperature, T_A. The maximum allowable power dissipation at any temperature is P_D = (T_{JMAX} T_A)/θ_{JA}. The values for maximum power dissipation listed above will be reached only when the device is operated in a severe fault condition (e.g. when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Such conditions should always be avoided.
- (6) Human body model is 100 pF capacitor discharged through a 1.5 kΩ resistor. Machine model is 220 pF discharged through 0Ω.
- (7) Reflow temperature profiles are different for lead-free and non-lead-free packages.

Operating Ratings (1)(2)

Operating Temperature Range	0°C ≤ T _A ≤ +70°C
All Supply Voltage	+3.0V to +3.6V

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Operation of the device beyond the Operating Ratings is not recommended.
- (2) All voltages are measured with respect to AGND = DGND = 0V, unless otherwise specified.

Electrical Characteristics

The following specifications apply for VA = VD = VR = VC = 3.3V, $C_L = 10pF$, and $f_{INCLK} = 27MHz$ unless otherwise specified. **Boldface limits apply for T_A = T_{MIN} to T_{MAX}**; all other limits T_A = 25°C. (1)

	Parameter	Test Conditions	Min ⁽²⁾	Тур ⁽³⁾	Max ⁽²⁾	Units
CMOS D	igital Input DC Specifications (RESETb,	SH_R, SCLK, SENb)				
V _{IH}	Logical "1" Input Voltage		2.0			V
V _{IL}	Logical "0" Input Voltage				0.8	V
V _{IHYST}	Logic Input Hysteresis			0.6		
I _{IH}	Logical "1" Input Current	V _{IH} = VD				
		RESET, SEN		100		nA
		SH_R, SCLK, SDI, CAL		65		μA
		CE		30		nA
I _{IL}	Logical "0" Input Current	V _{IL} = DGND				
		RESETSEN		-65		μA
		SH_R, SCLK, SDI, CAL		-100		nA
		CE		-30		μΑ
CMOS D	igital Output DC Specifications (SH1 to	SH5, RS, CP, PHIA, PHIB, PHIC)				-
V _{OH}	Logical "1" Output Voltage	$I_{OUT} = -0.5$ mA	3.0			V
V _{OL}	Logical "0" Output Voltage	I _{OUT} = 1.6mA			0.21	V
los	Output Short Circuit Current	V _{OUT} = DGND		18		mA
		V _{OUT} = VD		-25		
l _{oz}	CMOS Output TRI-STATE Current	V _{OUT} = DGND		20		nA
		V _{OUT} = VD		-25		
CMOS D	igital Output DC Specifications (CMOS I	Data Outputs)	'		*	
V _{OH}	Logical "1" Output Voltage	I _{OUT} = -0.5mA		2.3		V
V _{OL}	Logical "0" Output Voltage	I _{OUT} = 1.6mA		0.12		V
los	Output Short Circuit Current	V _{OUT} = DGND		12		mA
		V _{OUT} = VD		-14		
l _{oz}	CMOS Output TRI-STATE Current	V _{OUT} = DGND		20		nA
		V _{OUT} = VD		-25		
LVDS/CI	MOS Clock Receiver DC Specifications (INCLK+ and INCLK- Pins)				
V _{IHL}	Differential LVDS Clock	$R_L = 100\Omega$			200	mV
	High Threshold Voltage	V _{CM} (LVDS Input Common Mode Voltage)= 1.25V				
V_{ILL}	Differential LVDS Clock		-200			mV
	Low Threshold Voltage					
V _{IHC}	CMOS Clock	INCLK- = DGND	2.0			V
	High Threshold Voltage					
V _{ILC}	CMOS Clock				0.8	V
	Low Threshold Voltage					
I _{IHL}	CMOS Clock			230	260	μA
	Input High Current					
I _{ILC}	CMOS Clock		-135	-120		μΑ
	Input Low Current					

⁽¹⁾ The analog inputs are protected as shown in Figure 4. Input voltage magnitudes beyond the supply rails will not damage the device, provided the current is limited per Note 4 under the Absolute Maximum Ratings Table. However, input errors will be generated If the input goes above VA and below AGND.

⁽²⁾ Test limits are specified to Texas Instruments' AOQL (Average Outgoing Quality Level).

⁽³⁾ Typical figures are at T_A = 25°C, and represent most likely parametric norms at the time of product characterization. The typical specifications are not ensured.

Electrical Characteristics (continued)

The following specifications apply for VA = VD = VR = VC = 3.3V, $C_L = 10pF$, and $f_{INCLK} = 27MHz$ unless otherwise specified. Boldface limits apply for $T_A = T_{MIN}$ to T_{MAX} ; all other limits $T_A = 25^{\circ}C.$

	Parameter	Test Conditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units
LVDS Out	put DC Specifications					
V _{OD}	Differential Output Voltage	$R_L = 100\Omega$	280	390	490	mV
Vos	LVDS Output Offset Voltage		1.08	1.20	1.33	V
Ios	Output Short Circuit Current	$V_{OUT} = 0V, R_L = 100\Omega$		8.5		mA
Power Sup	pply Specifications				+	
IA	VA Analog Supply Current	LVDS Output Data Format		152	180	mA
		LVDS Output Data Format (Powerdown)		3.6	6	mA
		CMOS Output Data Format (40 MHz)		136	168	mA
ID	VD Digital Output Driver Supply	LVDS Output Data Format		76	94	mA
	Current	LVDS Output Data Format (Powerdown)		8.5	17	mA
		CMOS Output Data Format (ATE Loading of CMOS Outputs > 50 pF) (40 MHz)		46	68	mA
IC	VC CCD Timing Generator Output	Typical sensor outputs:		1	4	mA
	Driver Supply Current	SH1-SH5, PHIA, PHIB, PHIC, RS, CP				
		(ATE Loading of CMOS				
		Outputs > 50pF)				
PWR	Average Power Dissipation	LVDS Output Data Format		755	885	mW
		LVDS Output Data Format (Powerdown)		40	70	mW
		CMOS Output Data Format (ATE Loading of CMOS Outputs > 50pF) (40 MHz)		600	740	mW
Input Sam	pling Circuit Specifications		11		J.	I
V _{IN}	Input Voltage Level	CDS Gain=1x, PGA Gain=1x		2.3		Vp-p
		CDS Gain=2x, PGA Gain= 1x		1.22		
I _{IN_SH}	Sample and Hold Mode	Source Followers Off		32	50	μΑ
	Input Leakage Current	CDS Gain = 1x	(-200)	(-165)		
		$OS_X = VA (OS_X = AGND)$, ,	, ,		
		Source Followers Off		55	70	μA
		CDS Gain = 2x	(-290)	(-240)		
		$OS_X = VA (OS_X = AGND)$	(/	(- /		
		Source Followers On		20	250	nA
		CDS Gain = 2x	(-250)	(-50)		,
		$OS_X = VA (OS_X = AGND)$	(250)	(30)		
C _{SH}	Sample/Hold Mode	CDS Gain = 1x		2.5		pF
- ა⊓	Equivalent Input Capacitance					۲۰
		CDS Gain = 2x		4		pF
IN_CDS	CDS Mode	Source Followers Off		10	250	- 4
	Input Leakage Current	$OS_X = VA (OS_X = AGND)$	(-250)	(-50)		nA
R _{CLPIN}	CLPIN Switch Resistance			16	55	Ω
	(OS _X to VCLP Node)					

Submit Documentation Feedback

Electrical Characteristics (continued)

The following specifications apply for VA = VD = VR = VC = 3.3V, $C_L = 10 pF$, and $f_{INCLK} = 27 MHz$ unless otherwise specified. **Boldface limits apply for T_A = T_{MIN} to T_{MAX}**; all other limits $T_A = 25^{\circ}C.^{(1)}$

	Parameter	Test Conditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units
VCLP Ref	ference Circuit Specifications					
	VCLP Voltage 000	VCLP Voltage Setting = 000		0.85VA		V
	VCLP Voltage 001	VCLP Voltage Setting = 001		0.9VA		V
	VCLP Voltage 010	VCLP Voltage Setting = 010		0.95VA		V
	VCLP Voltage 011	VCLP Voltage Setting = 011		0.6VA		V
V_{VCLP}	VCLP Voltage 100	VCLP Voltage Setting = 100		0.55VA		V
	VCLP Voltage 101	VCLP Voltage Setting = 101		0.4VA		V
	VCLP Voltage 110	VCLP Voltage Setting = 110		0.35VA		V
	VCLP Voltage 111	VCLP Voltage Setting = 111		0.15VA		V
I _{sc}	VCLP DAC Short Circuit Output Current	0001 xxxxb VCLP Config. Register =		30		mA
Black Lev	vel Offset DAC Specifications					
	Resolution			10		Bits
	Monotonicity			Ensured by o	haracterization	n
	Offset Adjustment Range	CDS Gain = 1x				
	Referred to AFE Input	Minimum DAC Code = 0x000		-614		mV
		Maximum DAC Code = 0x3FF		614		
		CDS Gain = 2x				
		Minimum DAC Code = 0x000		-307		mV
		Maximum DAC Code = 0x3FF		307		
	Offset Adjustment Range	Minimum DAC Code = 0x000	-17500		-16130	1.00
	Referred to AFE Output	Maximum DAC Code = 0x3FF	+16130		+17500	LSB
	DAC LSB Step Size	CDS Gain = 1x		1.2		mV
		Referred to AFE Output		(32)		(LSB)
DNL	Differential Non-Linearity		-0.84	+0.74/ -0.37	+2.4	LSB
INL	Integral Non-Linearity		-2.5	+0.72/ -0.56	+2.5	LSB
PGA Spe	cifications					
	Gain Resolution			8		Bits
	Monotonicity			Ensured by o	haracterization	n
	Maximum Gain	CDS Gain = 1x	7.7	8.3	8.8	V/V
		CDS Gain = 1x	17.7	18.4	18.9	dB
	Minimum Gain	CDS Gain = 1x	0.58	0.62	0.67	V/V
		CDS Gain = 1x	-4.7	-4.2	-3.5	dB
	PGA Function	Gain (V/V) = (180/(277-PGA Cod	le))			
		Gain (dB) = 20LOG10(180/(277-	PGA Code))			
	Channel Matching	Minimum PGA Gain		3		%
		Maximum PGA Gain		12.7		
ADC Spe	cifications					
V _{REFT}	Top of Reference			2.07		V
V _{REFB}	Bottom of Reference			0.89		V
V _{REFT} - V _{REFB}	Differential Reference Voltage		1.06	1.18	1.30	V
-	Overrange Output Code			65535		
	Underrange Output Code			0		

Electrical Characteristics (continued)

The following specifications apply for VA = VD = VR = VC = 3.3V, $C_L = 10pF$, and $f_{INCLK} = 27MHz$ unless otherwise specified. **Boldface limits apply for T_A = T_{MIN} to T_{MAX}**; all other limits $T_A = 25^{\circ}C$. (1)

	Parameter	Test Conditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units
Digital C	Offset "DAC" Specifications					
	Resolution			7		Bits
	Digital Offset DAC LSB Step Size	Referred to AFE Output		32		LSB
	Offset Adjustment Range	Min DAC Code =7b0000000		-2048		
	Referred to AFE Output	Mid DAC Code =7b1000000		0		LSB
		Max DAC Code = 7b1111111		+2016		
Full Cha	nnel Performance Specifications					
DNL	Differential Non-Linearity	See (4)	-0.999	+0.8/-0.7	2.5	LSB
INL	Integral Non-Linearity	See (4)	-75	+18/-25	75	LSB
		Minimum PGA Gain (4)		-76		dB
ONE	T			10	26	LSB RMS
SNR	Total Output Noise	Maximum PGA Gain (4)		-56		dB
				96		LSB RMS
	Channel to Channel Crosstalk	Mode 3		26		1.00
		Mode 2		17		LSB

⁽⁴⁾ This parameter ensured by design and characterization.

AC Timing Specifications

The following specifications apply for VA = VD = VR = VC = 3.3V, $C_L = 10pF$, and $f_{INCLK} = 27MHz$ unless otherwise specified. **Boldface limits apply for T_A = T_{MIN} to T_{MAX}**; all other limits T_A = 25°C. (1)

	Parameter	Test Conditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units	
Input C	lock Timing Specifications						
		INCLK = PIXCLK	0.66		27 (Mode 3)		
		(Pixel Rate Clock)	1		30 (Mode 2)	MHz	
	land Clask Frances		1		30 (Mode 1)		
f _{INCLK}	Input Clock Frequency	INCLK = ADCCLK			81 (Mode 3)		
		(ADC Rate Clock)	2		60 (Mode 2)	MHz	
					30 (Mode 1)		
T _{dc}	Input Clock Duty Cycle		40/60	50/50	60/40	%	
Full Cha	annel Latency Specifications						
	3 Channel Mode Pipeline Delay	PIXPHASE0		24			
		PIXPHASE1		23 1/2		1_	
t _{LAT3}		PIXPHASE2		23		T _{ADC}	
		PIXPHASE3		22 1/2			
	2 Channel Mode Pipeline Delay	PIXPHASE0		21			
		PIXPHASE1		20 1/2		_	
t _{LAT2}		PIXPHASE2		20		T _{ADC}	
		PIXPHASE3		19 1/2			

⁽¹⁾ The analog inputs are protected as shown in Figure 4. Input voltage magnitudes beyond the supply rails will not damage the device, provided the current is limited per Note 4 under the Absolute Maximum Ratings Table. However, input errors will be generated If the input goes above VA and below AGND.

⁽²⁾ Test limits are specified to AOQL (Average Outgoing Quality Level).

⁽³⁾ Typical figures are at T_A = 25°C, and represent most likely parametric norms at the time of product characterization. The typical specifications are not ensured.

AC Timing Specifications (continued)

The following specifications apply for VA = VD = VR = VC = 3.3V, $C_L = 10 pF$, and $f_{INCLK} = 27 MHz$ unless otherwise specified. Boldface limits apply for $T_A = T_{MIN}$ to T_{MAX} ; all other limits $T_A = 25^{\circ}C.^{(1)}$

	Parameter	Test Conditions	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units
	1 Channel Mode Pipeline Delay	PIXPHASE0		19		
		PIXPHASE1		18 1/2		_
t _{LAT1}		PIXPHASE2		18		T _{ADC}
		PIXPHASE3		17 1/2		
SH_R Ti	ming Specifications					
t _{SHR_S}	SH_R Setup Time			2		ns
t _{SHR_H}	SH_R Hold Time			2		ns
LVDS O	utput Timing Specifications					
TX _{pp0}	TXCLK to Pulse Position 0	LVDS Output	-0.26	0	0.26	ns
TX _{pp1}	TXCLK to Pulse Position 1	Specifications not	1.50	1.76	2.02	ns
TX _{pp2}	TXCLK to Pulse Position 2	tested in production.	3.26	3.53	3.79	ns
TX _{pp3}	TXCLK to Pulse Position 3	Min/Max ensured	5.03	5.29	5.55	ns
TX _{pp4}	TXCLK to Pulse Position 4	by design,	6.80	7.06	7.32	ns
TX _{pp5}	TXCLK to Pulse Position 5	characterization and statistical	8.56	8.82	9.08	ns
TX _{pp6}	TXCLK to Pulse Position 6	analysis.	10.32	10.58	10.84	ns
CMOS C	Output Timing Specifications	•	•	,		·
		f _{INCLK} = 40MHz				
t _{CRDO}	CLKOUT Rising Edge to CMOS Output Data Transition	INCLK = ADCCLK	2	4.5	9	ns
	Catput Data Transition	(ADC Rate Clock)				
Serial In	terface Timing Specifications					
		f _{SCLK} <= f _{INCLK}				
		INCLK = PIXCLK			27/30/30	MHz
		(Pixel Rate Clock)			21/30/30	IVII IZ
f	Input Clock Frequency	Mode 3/2/1				
f _{SCLK}	input Glock i requericy	f _{SCLK} <= f _{INCLK}				
		INCLK = ADCCLK			81/60/30	MHz
		(ADC Rate Clock)			81/00/30	IVII IZ
		Mode 3/2/1				
	SCLK Duty Cycle			50/50		ns
t _{IH}	Input Hold Time		1.5			ns
t _{IS}	Input Setup Time		2.5			ns
t _{SENSC}	SCLK Start Time After SEN Low		1.5			ns
t _{SCSEN}	SEN High after last SCLK Rising Edge		2.5			ns
	CEN Dulge Width	INCLK present	6			T _{INCLK}
t _{SENW}	SEN Pulse Width	INCLK stopped ⁽⁴⁾⁽⁵⁾	50			ns
t _{OD}	Output Delay Time			11	14	ns
t _{HZ}	Data Output to High Z				0.5	T _{SCLK}

⁽⁴⁾ If the input INCLK is divided down to a lower internal clock rate via the PLL, the parameter t_{SENW} will be increased by the same factor.

⁽⁵⁾ When the Spread Spectrum Clock Generation feature is enabled, t_{SENW} should be increased by 1.

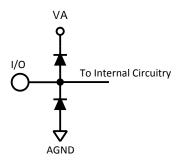


Figure 4.

REVISION HISTORY

Cł	nanges from Revision D (April 2013) to Revision E	Pag	ge
•	Changed layout of National Data Sheet to TI format		14

PACKAGE OPTION ADDENDUM

11-Apr-2013

PACKAGING INFORMATION

Orderable Device		Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
LM98725CCMT/NOPB	ACTIVE	TSSOP	DGG	56	34	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 70	LM98725CCMT	Samples
LM98725CCMTX/NOPB	ACTIVE	TSSOP	DGG	56	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 70	LM98725CCMT	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

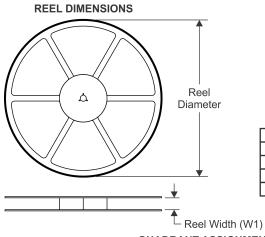
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

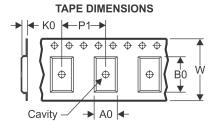
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

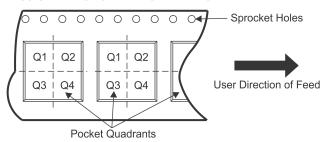
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Apr-2013


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

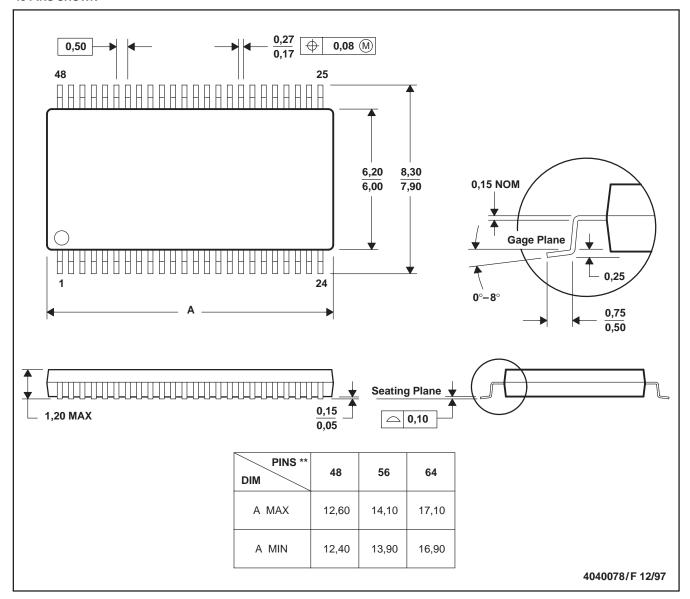
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM98725CCMTX/NOPB	TSSOP	DGG	56	1000	330.0	24.4	8.6	14.5	1.8	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Apr-2013


*All dimensions are nominal

Device		Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
	LM98725CCMTX/NOPB	TSSOP	DGG	56	1000	367.0	367.0	45.0	

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>