LM1896,LM2896

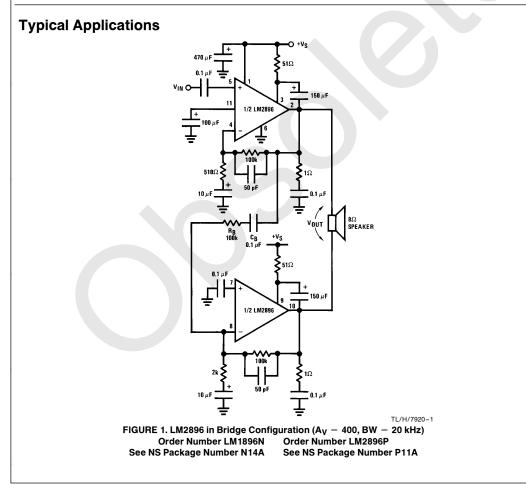
LM1896 LM2896 Dual Audio Power Amplifier

Literature Number: SNAS552A

National Semiconductor

LM1896/LM2896 Dual Audio Power Amplifier

General Description


The LM1896 is a high performance 6V stereo power amplifier designed to deliver 1 watt/channel into 4Ω or 2 watts bridged monaural into 8Ω . Utilizing a unique patented compensation scheme, the LM1896 is ideal for sensitive AM radio applications. This new circuit technique exhibits lower wideband noise, lower distortion, and less AM radiation than conventional designs. The amplifier's wide supply range (3V–9V) is ideal for battery operation. For higher supplies (V_S > 9V) the LM2896 is available in an 11-lead single-inline package. The LM2896 package has been redesigned, resulting in the slightly degraded thermal characteristics shown in the figure Device Dissipation vs Ambient Temperature.

Features

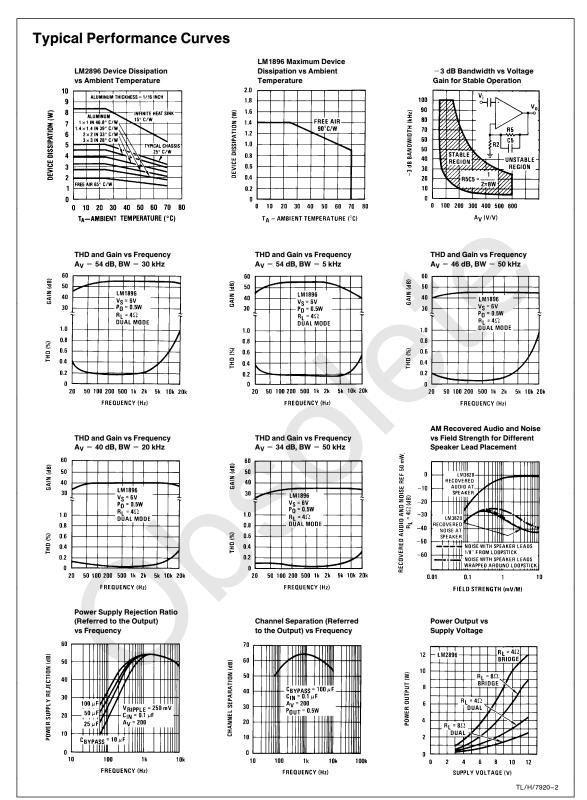
- Low AM radiation
- Low noise
- 3V, 4Ω , stereo P₀ = 250 mW
- Wide supply operation 3V-15V (LM2896)
- Low distortion
- No turn on "pop"
- Adjustable voltage gain and bandwidth
- Smooth waveform clipping
- Po = 9W bridged, LM2896

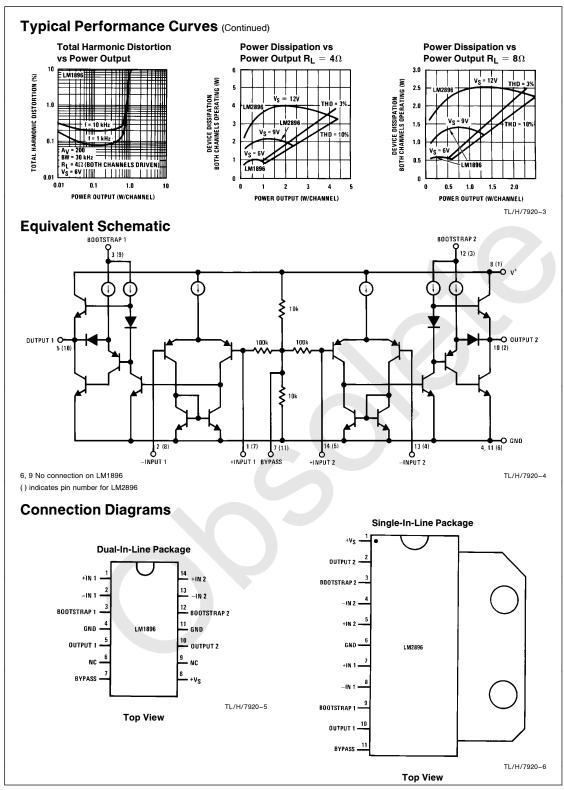
Applications

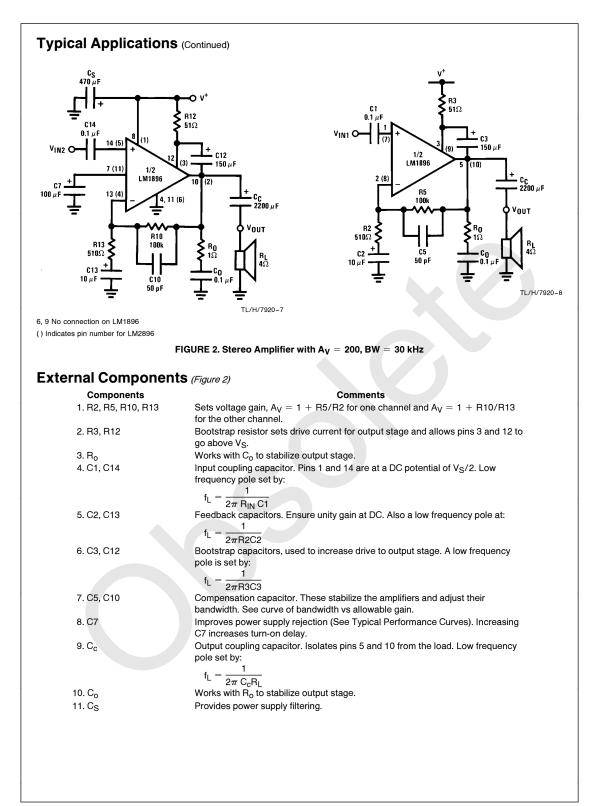
- Compact AM-FM radios
- Stereo tape recorders and players
- High power portable stereos

©1995 National Semiconductor Corporation TL/H/7920

RRD-B30M115/Printed in U. S. A.


LM1896/LM2896 Dual Audio Power Amplifier


February 1995


Absolute Maximum Ra	itings			
If Military/Aerospace specified devices are required,		Junction Temperature	150°C	
please contact the National S		Lead Temperature (Soldering, 10 sec.)	260°C	
Office/Distributors for availability	and specifications.	Thermal Resistance		
Supply Voltage		$\theta_{\rm JC}$ (DIP)	30°C/W	
LM1896	$V_{S} = 12V$	$\theta_{\rm IA}$ (DIP)	137°C/W	
LM2896	$V_{S} = 18V$	$\theta_{\rm JC}$ (SIP)	10°C/W	
Operating Temperature (Note 1)	0°C to +70°C	θ_{JA} (SIP)	55°C/W	
Storage Temperature	-65°C to +150°C			

Electrical Characteristics Unless otherwise specified, $T_A = 25^{\circ}C$, $A_V = 200$ (46 dB). For the LM1896; $V_S = 6V$ and $R_L = 4\Omega$. For LM2896, $T_{TAB} = 25^{\circ}C$, $V_S = 12V$ and $R_L = 8\Omega$. Test circuit shown in *Figure 2*.

	Min 3	Typ 15	Max 25 10	Min 3	Тур 25	Max 40 15	mA V
D = 10%, f = 1 kHz	3	15		3	25		
	3		10	3		15	v
$ \begin{array}{l} THD = 10\%, f = 1 \ \text{kHz} \\ V_S = 6V, R_L = 4\Omega \ \text{Dual Mode} \\ V_S = 6V, R_L = 8\Omega \ \text{Bridge Mode} \\ V_S = 9V, R_L = 8\Omega \ \text{Dual Mode} \\ V_S = 12V, R_L = 8\Omega \ \text{Bridge Mode} \\ V_S = 12V, R_L = 8\Omega \ \text{Bridge Mode} \\ V_S = 9V, R_L = 4\Omega \ \text{Bridge Mode} \\ V_S = 9V, R_L = 4\Omega \ \text{Dual Mode} \\ \end{array} \right\} \ T_{TAB} = 25^\circ\text{C} $		1.1 1.8 1.3	2.1	2.0 7.2	2.5 9.0 7.8 2.5		W/d W/d W/d W/d W/d
1 kHz = 50 mW = 0.5W = 1W		0.09 0.11			0.09 0.11 0.14		% % %
$C_{BY} = 100 \ \mu\text{F}, \text{f} = 1 \ \text{kHz}, C_{IN} = 0.1 \ \mu\text{F}$ Output Referred, $V_{RIPPLE} = 250 \ \text{mV}$		-54		-40	-54		dB
$\label{eq:GBY} \begin{split} C_{BY} &= 100 \; \mu\text{F}, \text{f} = 1 \; \text{kHz}, C_{\text{IN}} = 0.1 \; \mu\text{F} \\ \text{Output Referred} \end{split}$		-64		-50	-64		dE
uivalent Input Noise $R_S = 0$, = 0.1 μ F, BW = 20 $-$ 20 kHz R/ARM leband		1.4 1.4 2.0			1.4 1.4 2.0		μ\ μ\ μ\
	2.8	3	3.2	5.6	6	6.4	v
	50	100	350	50	100	350	kß
		5			5		m١
1896N-2, LM2896P-2		10	20		10	20	m\
		120			120		nA
	$= 12V, R_{L} = 8\Omega \text{ Dual Mode}$ $= 12V, R_{L} = 8\Omega \text{ Bridge Mode}$ $= 9V, R_{L} = 4\Omega \text{ Bridge Mode}$ $= 9V, R_{L} = 4\Omega \text{ Dual Mode}$ $T_{TAB} = 25^{\circ}C$ $= 9V, R_{L} = 4\Omega \text{ Dual Mode}$ $T_{TAB} = 25^{\circ}C$ $= 100 \ \mu\text{F}, f = 1 \ \text{kHz}, C_{IN} = 0.1 \ \mu\text{F}$ $= 100 \ \mu\text{F}, f = 1 \ \text{kHz}, C_{IN} = 0.1 \ \mu\text{F}$ $= 100 \ \mu\text{F}, f = 1 \ \text{kHz}, C_{IN} = 0.1 \ \mu\text{F}$ $= 100 \ \mu\text{F}, f = 1 \ \text{kHz}, C_{IN} = 0.1 \ \mu\text{F}$ $= 100 \ \mu\text{F}, f = 1 \ \text{kHz}, C_{IN} = 0.1 \ \mu\text{F}$ $= 100 \ \mu\text{F}, f = 1 \ \text{kHz}, C_{IN} = 0.1 \ \mu\text{F}$ $= 100 \ \mu\text{F}, f = 1 \ \text{kHz}, C_{IN} = 0.1 \ \mu\text{F}$ $= 100 \ \mu\text{F}, f = 1 \ \text{kHz}, C_{IN} = 0.1 \ \mu\text{F}$ $= 0.1 \ \mu\text{F}, BW = 20 - 20 \ \text{kHz}$ $= 20 - 20 \ \text{kHz}$	$= 12V, R_{L} = 8\Omega \text{ Dual Mode}$ $= 12V, R_{L} = 8\Omega \text{ Bridge Mode}$ $= 9V, R_{L} = 4\Omega \text{ Bridge Mode}$ $= 9V, R_{L} = 4\Omega \text{ Dual Mode}$ $T_{TAB} = 25^{\circ}C$	$= 12V, R_{L} = 8\Omega \text{ Dual Mode}$ $= 12V, R_{L} = 8\Omega \text{ Bridge Mode}$ $= 9V, R_{L} = 4\Omega \text{ Bridge Mode}$ $= 9V, R_{L} = 4\Omega \text{ Dual Mode}$ $T_{TAB} = 25^{\circ}C$ $= 0.1 \mu F, f = 1 \text{ kHz}, C_{IN} = 0.1 \mu F$ $= 100 \mu F, f = 1 \text{ kHz}, C_{IN} = 0.1 \mu F$ $= 100 \mu F, f = 1 \text{ kHz}, C_{IN} = 0.1 \mu F$ $= 100 \mu F, f = 1 \text{ kHz}, C_{IN} = 0.1 \mu F$ $= 100 \mu F, f = 1 \text{ kHz}, C_{IN} = 0.1 \mu F$ $= 100 \mu F, f = 1 \text{ kHz}, C_{IN} = 0.1 \mu F$ $= 100 \mu F, f = 1 \text{ kHz}, C_{IN} = 0.1 \mu F$ $= 0.1 \mu F, BW = 20 - 20 \text{ kHz}$ $= 1.1 \mu F, BW = 20 - 20 \text{ kHz}$ $= 100 \mu F, BW = 10 - 10 \text{ kHz}$ $= 100 \mu F, BW = 10 - 10 \text{ kHz}$ $= 100 \mu F, BW = 10 - 10 \text{ kHz}$ $= 100 \mu F, BW = 10 - 10 \text{ kHz}$ $= 100 \mu F, BW = 10 - 10 \text{ kHz}$ $= 10 - 10 - 10 $	$= 12V, R_{L} = 8\Omega \text{ Dual Mode}$ $= 12V, R_{L} = 8\Omega \text{ Bridge Mode}$ $= 9V, R_{L} = 4\Omega \text{ Bridge Mode}$ $= 9V, R_{L} = 4\Omega \text{ Dual Mode}$ $T_{TAB} = 25^{\circ}C$ 1 KHz $= 50 \text{ mW}$ $= 0.09 \text{ 0.11}$ $= 100 \ \mu\text{F}, \text{f} = 1 \text{ kHz}, C_{\text{IN}} = 0.1 \ \mu\text{F}$ $= 100 \ \mu\text{F}, \text{f} = 1 \text{ kHz}, C_{\text{IN}} = 0.1 \ \mu\text{F}$ $= 100 \ \mu\text{F}, \text{f} = 1 \text{ kHz}, C_{\text{IN}} = 0.1 \ \mu\text{F}$ $= 100 \ \mu\text{F}, \text{f} = 1 \text{ kHz}, C_{\text{IN}} = 0.1 \ \mu\text{F}$ $= 100 \ \mu\text{F}, \text{f} = 1 \text{ kHz}, C_{\text{IN}} = 0.1 \ \mu\text{F}$ $= 100 \ \mu\text{F}, \text{f} = 1 \text{ kHz}, C_{\text{IN}} = 0.1 \ \mu\text{F}$ $= 100 \ \mu\text{F}, \text{f} = 1 \text{ kHz}, C_{\text{IN}} = 0.1 \ \mu\text{F}$ $= 0.1 \ \mu\text{F}, \text{BW} = 20 - 20 \text{ kHz}$ $= 0.1 \ \mu\text{F}, \text{BW} = 20 - 20 \text{ kHz}$ $= 100 \ 2.8 \ 3 \ 3.2$ $= 50 \ 100 \ 350$ $= 5 \ 896\text{N-2}, \text{LM2896P-2}$ $= 10 \ 20 \ 120$ $= 120 \ 120$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Application Hints

AM Radios

The LM1896/LM2896 has been designed fo fill a wide range of audio power applications. A common problem with IC audio power amplifiers has been poor signal-to-noise performance when used in AM radio applications. In a typical radio application, the loopstick antenna is in close proximity to the audio amplifer. Current flowing in the speaker and power supply leads can cause electromagnetic coupling to the loopstick, resulting in system oscillation. In addition, most audio power amplifiers are not optimized for lowest noise because of compensation requirements. If noise from the audio amplifier radiates into the AM section, the sensitivity and signal-to-noise ratio will be degraded.

The LM1896 exhibits extremely low wideband noise due in part to an external capacitor C5 which is used to tailor the bandwidth. The circuit shown in Figure 2 is capable of a signal-to-noise ratio in excess of 60 dB referred to 50 mW. Capacitor C5 not only limits the closed loop bandwidth, it also provides overall loop compensation. Neglecting C2 in Figure 2. the gain is:

$$A_V(S) = \frac{S + A_V \, \omega_0}{S + \omega_0}$$
 where $A_V = \frac{R2 + R5}{R2}, \quad \omega_0 = \frac{1}{R5C5}$

A curve of $-3 \text{ dB BW} (\omega_0)$ vs A_V is shown in the Typical Performance Curves.

Figure 3 shows a plot of recovered audio as a function of field strength in $\mu\text{V/M}.$ The receiver section in this example is an LM3820. The power amplifier is located about two inches from the loopstick antenna. Speaker leads run parallel to the loopstick and are 1/8 inch from it. Referenced to a 20 dB S/N ratio, the improvement in noise performance over conventional designs is about 10 dB. This corresponds to an increase in usable sensitivity of about 8.5 dB.

Bridge Amplifiers

The LM1896/LM2896 can be used in the bridge mode as a monaural power amplifier. In addition to much higher power output, the bridge configuration does not require output coupling capacitors. The load is connected directly between the amplifier outputs as shown in Figure 4.

Amp 1 has a voltage gain set by 1 + R5/R2. The output of amp 1 drives amp 2 which is configured as an inverting amplifier with unity gain. Because of this phase inversion in amp 2, there is a 6 dB increase in voltage gain referenced to V_i. The voltage gain in bridge is:

$$\frac{V_0}{V_i} = 2\left(1 + \frac{R5}{R2}\right)$$

CB is used to prevent DC voltage on the output of amp 1 from causing offset in amp 2. Low frequency response is influenced by:

$$f_{L} = \frac{I}{2\pi R_{B}C_{B}}$$

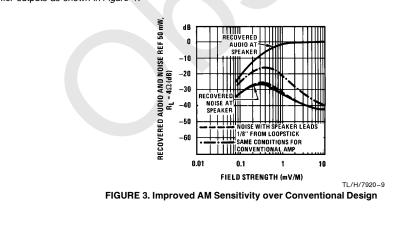
Vi

Several precautions should be observed when using the LM1896/LM2896 in bridge configuration. Because the amplifiers are driving the load out of phase, an 8Ω speaker will appear as a 4Ω load, and a 4Ω speaker will appear as a 2Ω load. Power dissipation is twice as severe in this situation. For example, if V_S = 6V and R_L = 8 \Omega bridged, then the maximum dissipation is:

$$P_{D} = \frac{V_{S}^{2}}{20 R_{L}} \times 2 = \frac{6^{2}}{20 \times 4} \times 2$$
$$P_{D} = 0.9 \text{ Watts}$$

This amount of dissipation is equivalent to driving two 4Ω loads in the stereo configuration.

When adjusting the frequency response in the bridge configuration, R5C5 and R10C10 form a 2 pole cascade and the -3 dB bandwidth is actually shifted to a lower frequency:


$$W = \frac{0.707}{2\pi RC}$$

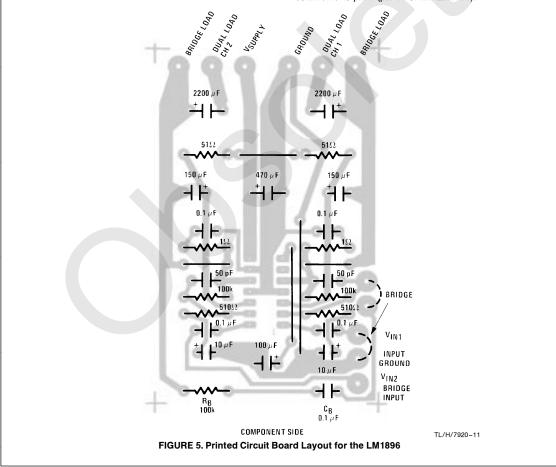
where R = feedback resistor

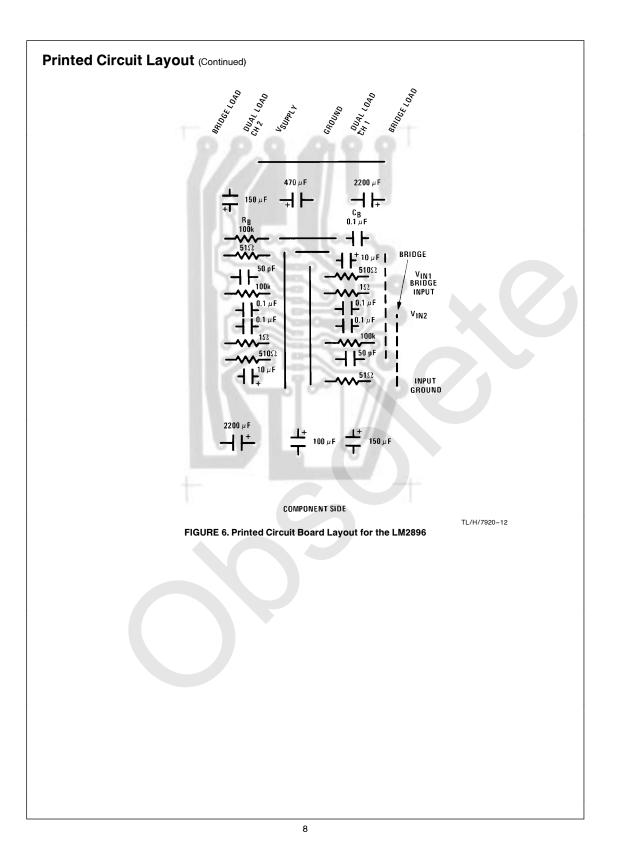
C = feedback capacitor

R

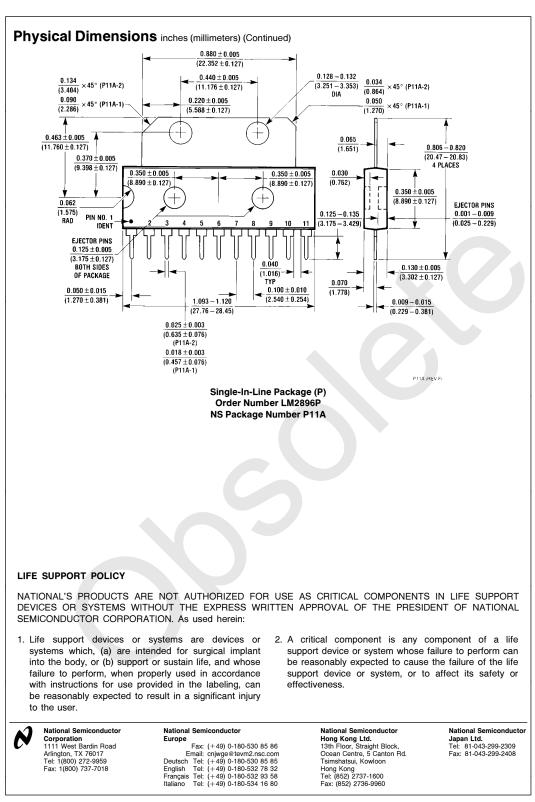
To measure the output voltage, a floating or differential meter should be used because a prolonged output short will over dissipate the package. Figure 1 shows the complete bridge amplifier.

Application Hints (Continued)


Figure 4. Bridge Amplifier Connection


Printed Circuit Layout

Printed Circuit Board Layout


Figure 5 and *Figure 6* show printed circuit board layouts for the LM1896 and LM2896. The circuits are wired as stereo amplifiers. The signal source ground should return to the input ground shown on the boards. Returning the loads to power supply ground through a separate wire will keep the THD at its lowest value. The inputs should be terminated in less than 50 k Ω to prevent an input-output oscillation. This oscillation is dependent on the gain and the proximity of the bridge elements R_B and C_B to the (+) input. If the bridge mode is not used, do not insert R_B, C_B into the PCB.

To wire the amplifer into the bridge configuration, short the capacitor on pin 7 (pin 1 of the LM1896) to ground. Connect together the nodes labeled BRIDGE and drive the capacitor connected to pin 5 (pin 14 of the LM1896).

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated