

SNIS150A - SEPTEMBER 2008 - REVISED MARCH 2013

1.5V, micro SMD, Dual-Gain Analog Temperature Sensor with Class AB Output

Check for Samples: LM94023

### **FEATURES**

- Low 1.5V Operation
- Push-pull Output with 50µA Source Current Capability
- **Two Selectable Gains**
- Very Accurate Over Wide Temperature Range of -50°C to +150°C
- Low Quiescent Current
- **Output is Short-circuit Protected**
- **Extremely Small DSBGA Package**
- Footprint Compatible with the Industrystandard LM20 Temperature Sensor

## APPLICATIONS

- Cell Phones •
- **Wireless Transceivers**
- **Battery Management**
- Automotive
- **Disk Drives**
- Games
- Appliances

### **KEY SPECIFICATIONS**

- Supply Voltage 1.5V to 5.5V
- Supply Current 5.4 µA (typ)
- Output Drive ±50 µA
- **Temperature Accuracy** 
  - 20°C to 40°C ±1.5°C
  - –50°C to 70°C ±1.8°C
  - –50°C to 90°C ±2.1°C
  - –50°C to 150°C ±2.7°C
- Operating Temperature -50°C to 150°C

### DESCRIPTION

The LM94023 is a precision analog output CMOS integrated-circuit temperature sensor that operates at a supply voltage as low as 1.5 Volts. Available in the very small four-bump DSBGA 0.8mm x 0.8mm) the LM94023 occupies very little board area. A class-AB output structure gives the LM94023 strong output source and sink current capability for driving heavy loads, making it well suited to source the input of a sample-and-hold analog-to-digital converter with its transient load requirements, This generally means the LM94023 can be used without external components, like resistors and buffers, on the output. While operating over the wide temperature range of -50°C to +150°C, the LM94023 delivers an output voltage that is inversely porportional to measured temperature. The LM94023's low supply current makes it ideal for battery-powered systems as well as general temperature sensing applications.

A Gain Select (GS) pin sets the gain of the temperature-to-voltage output transfer function. Either of two slopes are selectable: -5.5 mV/°C (GS=0) or -8.2 mV/°C (GS=1). In the lowest gain configuration, the LM94023 can operate with a 1.5V supply while measuring temperature over the full -50°C to +150°C operating range. Tying GS high causes the transfer function to have the largest gain for maximum temperature sensitivity. The gain-select inputs can be tied directly to V<sub>DD</sub> or Ground without any pull-up or pull-down resistors, reducing component count and board area. These inputs can also be driven by logic signals allowing the system to optimize the gain during operation or system diagnostics.

### **Connection Diagram**

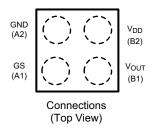



Figure 1. DSBGA **Top View** See Package Number YFQ0004

44

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.



#### www.ti.com

### **Typical Transfer Characteristic**

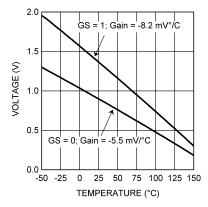
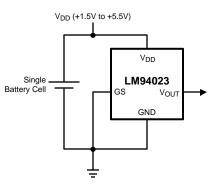




Figure 2. Output Voltage vs Temperature

### **Typical Application**

Full-Range Celsius Temperature Sensor (-50°C to +150°C) Operating from a Single Battery Cell



#### **PIN DESCRIPTIONS**

| Label            | Pin Number | Туре          | Equivalent Circuit     | Function                                                                           |
|------------------|------------|---------------|------------------------|------------------------------------------------------------------------------------|
| GS               | A1         | Logic Input   | VDD<br>F<br>ESD<br>GND | Gain Select - Input for<br>selecting the slope of<br>the analog output<br>response |
| GND              | A2         | Ground        |                        | Power Supply Ground                                                                |
| V <sub>OUT</sub> | B1         | Analog Output |                        | Outputs a voltage<br>which is inversely<br>proportional to<br>temperature          |
| V <sub>DD</sub>  | B2         | Power         |                        | Positive Supply Voltage                                                            |



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

www.ti.com

#### Absolute Maximum Ratings<sup>(1)</sup>

| ja see la te maximum raininge                     |                                             |                                                      |
|---------------------------------------------------|---------------------------------------------|------------------------------------------------------|
| Supply Voltage                                    |                                             | -0.3V to +6.0V                                       |
| Voltage at Output Pin                             |                                             | -0.3V to (V <sub>DD</sub> + 0.3V)                    |
| Output Current                                    |                                             | ±7 mA                                                |
| Voltage at GS Input Pin                           |                                             | -0.3V to +6.0V                                       |
| Input Current at any pin <sup>(2)</sup>           |                                             | 5 mA                                                 |
| Storage Temperature                               |                                             | -65°C to +150°C                                      |
| Maximum Junction Temperature (T <sub>JMAX</sub> ) |                                             | +150°C                                               |
| ESD Susceptibility <sup>(3)</sup>                 | Human Body Model                            | 2500V                                                |
|                                                   | Machine Model                               | 250V                                                 |
| Soldering process must comply with Texas Instru   | uments' Reflow Temperature Profile specific | ations. Refer to www.ti.com/packaging <sup>(4)</sup> |

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

(2) When the input voltage (V<sub>1</sub>) at any pin exceeds power supplies (V<sub>1</sub> < GND or V<sub>1</sub> > V<sup>+</sup>), the current at that pin should be limited to 5 mA.
 (3) The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

(4) Reflow temperature profiles are different for lead-free and non-lead-free packages.

#### Operating Ratings<sup>(1)</sup>

| Specified Temperature Range                                               | $T_{MIN} \le T_A \le T_{MAX}$   |
|---------------------------------------------------------------------------|---------------------------------|
| LM94023                                                                   | −50°C ≤ T <sub>A</sub> ≤ +150°C |
| Supply Voltage Range (V <sub>DD</sub> )                                   | +1.5 V to +5.5 V                |
| Thermal Resistance $(\theta_{JA})^{(2)(3)}$<br>LM94023BITME, LM94023BITMX | 122.6°C/W                       |

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

(2) The junction to ambient thermal resistance ( $\theta_{JA}$ ) is specified without a heat sink in still air.

(3) Changes in output due to self heating can be computed by multiplying the internal dissipation by the thermal resistance.

#### **Accuracy Characteristics**

These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in the LM94023 Transfer Table.

| Parameter            | Conditions |                                                                    | Limits <sup>(1)</sup> | Units<br>(Limit) |  |
|----------------------|------------|--------------------------------------------------------------------|-----------------------|------------------|--|
| Temperature          | GS=0       | $T_A = +20^{\circ}C$ to $+40^{\circ}C$ ; $V_{DD} = 1.5V$ to $5.5V$ | ±1.5                  | °C (max)         |  |
| Error <sup>(2)</sup> |            | $T_A = +0^{\circ}C$ to $+70^{\circ}C$ ; $V_{DD} = 1.5V$ to $5.5V$  | ±1.8                  | °C (max)         |  |
|                      |            | $T_A = +0^{\circ}C$ to $+90^{\circ}C$ ; $V_{DD} = 1.5V$ to $5.5V$  | ±2.1                  | °C (max)         |  |
|                      |            | $T_A = +0^{\circ}C$ to $+120^{\circ}C$ ; $V_{DD} = 1.5V$ to $5.5V$ | ±2.4                  | °C (max)         |  |
|                      |            | $T_A = +0^{\circ}C$ to $+150^{\circ}C$ ; $V_{DD} = 1.5V$ to $5.5V$ | ±2.7                  | °C (max)         |  |
|                      |            | $T_A = -50^{\circ}C$ to $+0^{\circ}C$ ; $V_{DD} = 1.6V$ to $5.5V$  | ±1.8                  | °C (max)         |  |
|                      | GS=1       | $T_A = +20^{\circ}C$ to $+40^{\circ}C$ ; $V_{DD} = 1.8V$ to 5.5V   | ±1.5                  | °C (max)         |  |
|                      |            | $T_A = +0^{\circ}C$ to $+70^{\circ}C$ ; $V_{DD} = 1.9V$ to 5.5V    | ±1.8                  | °C (max)         |  |
|                      |            | $T_A = +0^{\circ}C$ to $+90^{\circ}C$ ; $V_{DD} = 1.9V$ to 5.5V    | ±2.1                  | °C (max)         |  |
|                      |            | $T_A = +0^{\circ}C$ to $+120^{\circ}C$ ; $V_{DD} = 1.9V$ to 5.5V   | ±2.4                  | °C (max)         |  |
|                      |            | $T_A = +0^{\circ}C$ to $+150^{\circ}C$ ; $V_{DD} = 1.9V$ to $5.5V$ | ±2.7                  | °C (max)         |  |
|                      |            | $T_A = -50^{\circ}C$ to $+0^{\circ}C$ ; $V_{DD} = 2.3V$ to $5.5V$  | ±1.8                  | °C (max)         |  |

(1) Limits are specified to Texas Instruments' AOQL (Average Outgoing Quality Level).

(2) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Transfer Table at the specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no DC load.



www.ti.com

#### **Electrical Characteristics**

Unless otherwise noted, these specifications apply for  $+V_{DD} = +1.5V$  to +5.5V. Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ .

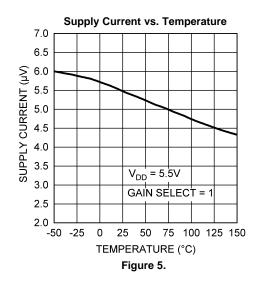
| Symbol          | Parameter                                        | Conditions                                                                 |                                                                  | Typical <sup>(1)</sup> | Limits <sup>(2)</sup>  | Units<br>(Limit) |
|-----------------|--------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|------------------------|------------------------|------------------|
|                 | Sensor Gain                                      | GS = 0                                                                     |                                                                  | -5.5                   |                        | mV/°C            |
|                 |                                                  | GS = 1                                                                     |                                                                  | -8.2                   |                        | mV/°C            |
|                 | Load Regulation <sup>(3)</sup>                   | $1.5 \text{V} \leq \text{V}_{\text{DD}} < 5.5 \text{V}$                    | Source ≤ 50 μA,<br>(V <sub>DD</sub> - V <sub>OUT</sub> ) ≥ 200mV | -0.22                  | -1                     | mV (max)         |
|                 |                                                  |                                                                            | Sink ≤ 50 µA,<br>V <sub>OUT</sub> ≥ 200mV                        | 0.26                   | 1                      | mV (max)         |
|                 | Line Regulation <sup>(4)</sup>                   |                                                                            |                                                                  | 200                    |                        | μV/V             |
| I <sub>S</sub>  | Supply Current                                   | $T_A = +30$ °C to +150°C,<br>(V <sub>DD</sub> - V <sub>OUT</sub> ) ≥ 100mV |                                                                  | 5.4                    | 8.1                    | µA (max)         |
|                 |                                                  | $T_A = -50$ °C to +150°C,<br>(V <sub>DD</sub> - V <sub>OUT</sub> ) ≥ 100mV |                                                                  | 5.4                    | 9                      | µA (max)         |
| CL              | Output Load Capacitance                          |                                                                            |                                                                  | 1100                   |                        | pF (max)         |
|                 | Power-on Time <sup>(5)</sup>                     | C <sub>L</sub> = 0 pF to 1100 pF                                           |                                                                  | 0.7                    | 1.9                    | ms (max)         |
| V <sub>IH</sub> | GS1 and GS0 Input Logic<br>"1" Threshold Voltage |                                                                            |                                                                  |                        | V <sub>DD</sub> - 0.5V | V (min)          |
| V <sub>IL</sub> | GS1 and GS0 Input Logic<br>"0" Threshold Voltage |                                                                            |                                                                  |                        | 0.5                    | V (max)          |
| I <sub>IH</sub> | Logic "1" Input Current <sup>(6)</sup>           |                                                                            |                                                                  | 0.001                  | 1                      | µA (max)         |
| I <sub>IL</sub> | Logic "0" Input Current <sup>(6)</sup>           |                                                                            |                                                                  | 0.001                  | 1                      | µA (max)         |

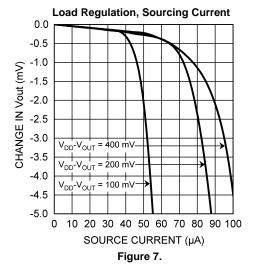
Typicals are at  $T_J = T_A = 25^{\circ}C$  and represent most likely parametric norm. (1)

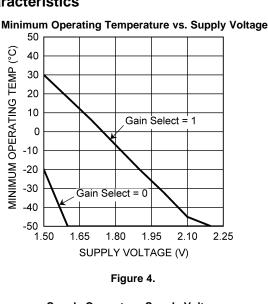
Limits are specified to Texas Instruments' AOQL (Average Outgoing Quality Level). Source currents are flowing out of the LM94023. Sink currents are flowing into the LM94023. (2)

(3)

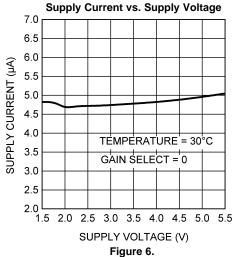
(4) Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in Output Voltage Shift. Specified by design. (5)


The input current is leakage only and is highest at high temperature. It is typically only 0.001µA. The 1µA limit is solely based on a (6) testing limitation and does not reflect the actual performance of the part.

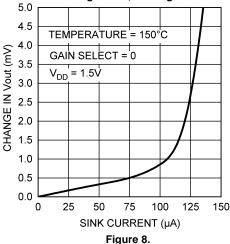






#### Figure 3.








SNIS150A - SEPTEMBER 2008 - REVISED MARCH 2013



Load Regulation, Sinking Current



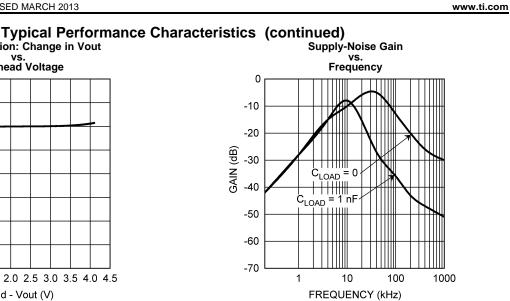
1.0

0.5

0.0

-0.5

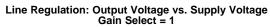
-1.0

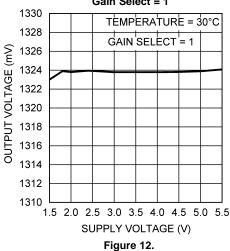

-1.5

-2.0

-2.5

CHANGE IN Vout (mV)


Line Regulation: Change in Vout vs. Overhead Voltage




ÈXAS

NSTRUMENTS







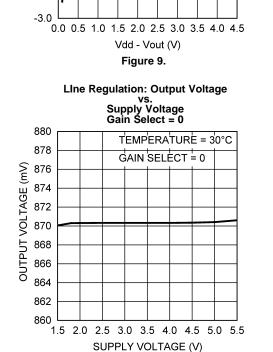



Figure 11.

6



#### LM94023 TRANSFER FUNCTION

The LM94023 has two selectable gains, selected by the Gain Select (GS) input pin. The output voltage for each gain, across the complete operating temperature range is shown in the LM94023 Transfer Table, below. This table is the reference from which the LM94023 accuracy specifications (listed in the Electrical Characteristics section) are determined. This table can be used, for example, in a host processor look-up table.

#### Table 1. LM94023 Temperature-Voltage Transfer Table<sup>(1)</sup>

| Temperature<br>(°C) | GS = 0<br>(mV) | GS = 1<br>(mV) |
|---------------------|----------------|----------------|
| -50                 | 1299           | 1955           |
| -49                 | 1294           | 1949           |
| -48                 | 1289           | 1942           |
| -47                 | 1284           | 1935           |
| -46                 | 1278           | 1928           |
| -45                 | 1273           | 1921           |
| -44                 | 1268           | 1915           |
| -43                 | 1263           | 1908           |
| -42                 | 1257           | 1900           |
| -41                 | 1252           | 1892           |
| -40                 | 1247           | 1885           |
| -39                 | 1242           | 1877           |
| -38                 | 1236           | 1869           |
| -37                 | 1231           | 1861           |
| -36                 | 1226           | 1853           |
| -35                 | 1221           | 1845           |
| -34                 | 1215           | 1838           |
| -33                 | 1210           | 1830           |
| -32                 | 1205           | 1822           |
| -31                 | 1200           | 1814           |
| -30                 | 1194           | 1806           |
| -29                 | 1189           | 1798           |
| -28                 | 1184           | 1790           |
| -27                 | 1178           | 1783           |
| -26                 | 1173           | 1775           |
| -25                 | 1168           | 1767           |
| -24                 | 1162           | 1759           |
| -23                 | 1157           | 1751           |
| -22                 | 1152           | 1743           |
| -21                 | 1146           | 1735           |
| -20                 | 1141           | 1727           |
| -19                 | 1136           | 1719           |
| -18                 | 1130           | 1711           |
| -17                 | 1125           | 1703           |
| -16                 | 1120           | 1695           |
| -15                 | 1114           | 1687           |
| -14                 | 1109           | 1679           |
| -13                 | 1104           | 1671           |
| -12                 | 1098           | 1663           |
| -11                 | 1093           | 1656           |

(1) The output voltages in this table apply for  $V_{\text{DD}}$  = 5V.

www.ti.com

STRUMENTS

ÈXAS

## Table 1. LM94023 Temperature-Voltage Transfer Table<sup>(1)</sup> (continued)

| Temperature | GS = 0 | GS = 1 |
|-------------|--------|--------|
| (°C)        | (mV)   | (mV)   |
| -10         | 1088   | 1648   |
| -9          | 1082   | 1639   |
| -8          | 1077   | 1631   |
| -7          | 1072   | 1623   |
| -6          | 1066   | 1615   |
| -5          | 1061   | 1607   |
| -4          | 1055   | 1599   |
| -3          | 1050   | 1591   |
| -2          | 1044   | 1583   |
| -1          | 1039   | 1575   |
| 0           | 1034   | 1567   |
| 1           | 1028   | 1559   |
| 2           | 1023   | 1551   |
| 3           | 1017   | 1543   |
| 4           | 1012   | 1535   |
| 5           | 1007   | 1527   |
| 6           | 1001   | 1519   |
| 7           | 996    | 1511   |
| 8           | 990    | 1502   |
| 9           | 985    | 1494   |
| 10          | 980    | 1486   |
| 11          | 974    | 1478   |
| 12          | 969    | 1470   |
| 13          | 963    | 1462   |
| 14          | 958    | 1454   |
| 15          | 952    | 1446   |
| 16          | 947    | 1438   |
| 17          | 941    | 1430   |
| 18          | 936    | 1421   |
| 19          | 931    | 1413   |
| 20          | 925    | 1405   |
| 21          | 920    | 1397   |
| 22          | 914    | 1389   |
| 23          | 909    | 1381   |
| 24          | 903    | 1373   |
| 25          | 898    | 1365   |
| 26          | 892    | 1356   |
| 27          | 887    | 1348   |
| 28          | 882    | 1340   |
| 29          | 876    | 1332   |
| 30          | 871    | 1324   |
| 31          | 865    | 1316   |
| 32          | 860    | 1308   |
| 33          | 854    | 1299   |
| 34          | 849    | 1291   |
| 35          | 843    | 1283   |
|             |        |        |
| 36          | 838    | 1275   |



SNIS150A - SEPTEMBER 2008 - REVISED MARCH 2013

## Table 1. LM94023 Temperature-Voltage Transfer Table<sup>(1)</sup> (continued)

| Temperature | GS = 0 | GS = 1                                |
|-------------|--------|---------------------------------------|
| (°C)        | (mV)   | (mV)                                  |
| 37          | 832    | 1267                                  |
| 38          | 827    | 1258                                  |
| 39          | 821    | 1250                                  |
| 40          | 816    | 1242                                  |
| 41          | 810    | 1234                                  |
| 42          | 804    | 1225                                  |
| 43          | 799    | 1217                                  |
| 44          | 793    | 1209                                  |
| 45          | 788    | 1201                                  |
| 46          | 782    | 1192                                  |
| 47          | 777    | 1184                                  |
| 48          | 771    | 1176                                  |
| 49          | 766    | 1167                                  |
| 50          | 760    | 1159                                  |
| 51          | 754    | 1151                                  |
| 52          | 749    | 1143                                  |
| 53          | 743    | 1134                                  |
| 54          | 738    | 1126                                  |
| 55          | 732    | 1118                                  |
| 56          | 726    | 1109                                  |
| 57          | 721    | 1101                                  |
| 58          | 715    | 1093                                  |
| 59          | 710    | 1084                                  |
| 60          | 704    | 1076                                  |
| 61          | 698    | 1067                                  |
| 62          | 693    | 1059                                  |
| 63          | 687    | 1051                                  |
| 64          | 681    | 1042                                  |
| 65          | 676    | 1034                                  |
| 66          | 670    | 1025                                  |
| 67          | 664    | 1017                                  |
| 68          | 659    | 1008                                  |
| 69          | 653    | 1000                                  |
| 70          | 647    | 991                                   |
| 71          | 642    | 983                                   |
| 72          | 636    | 974                                   |
| 73          | 630    | 966                                   |
| 74          | 625    | 957                                   |
| 75          | 619    | 949                                   |
| 76          | 613    | 941                                   |
| 77          | 608    | 932                                   |
| 78          | 602    | 924                                   |
| 79          | 596    | 915                                   |
| 80          | 591    | 907                                   |
| 81          | 585    | 898                                   |
| 82          | 579    | 890                                   |
| 83          | 574    | 881                                   |
|             | l.     | · · · · · · · · · · · · · · · · · · · |

Copyright © 2008–2013, Texas Instruments Incorporated

10 Submit Documentation Feedback

Copyright © 2008–2013, Texas Instruments Incorporated

| SNIS150A-SEPTEMBER 2008-REVISED MARCH 2013 |
|--------------------------------------------|
|                                            |

| Table 1. LM94023 Temperature-Voltage Transfe | r Table <sup>(1)</sup> | (continued) |
|----------------------------------------------|------------------------|-------------|
|----------------------------------------------|------------------------|-------------|

|                     | Table 1. LM94023 Temperature-Voltage Transfer Table(') (continued)         Temperature       GS = 0         GS = 1 |         |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| Temperature<br>(°C) | (mV)                                                                                                               | (mV)    |  |  |  |
| 84                  | 568                                                                                                                | 873     |  |  |  |
| 85                  | 562                                                                                                                | 865     |  |  |  |
| 86                  | 557                                                                                                                | 856     |  |  |  |
| 87                  | 551                                                                                                                | 848     |  |  |  |
| 88                  | 545                                                                                                                | 839     |  |  |  |
| 89                  | 539                                                                                                                | 831     |  |  |  |
| 90                  | 534                                                                                                                | 822     |  |  |  |
| 91                  | 528                                                                                                                | 814     |  |  |  |
| 92                  | 522                                                                                                                | 805     |  |  |  |
| 93                  | 517                                                                                                                | 797     |  |  |  |
| 94                  | 511                                                                                                                | 788     |  |  |  |
| 95                  | 505                                                                                                                | 779     |  |  |  |
| 96                  | 499                                                                                                                | 771     |  |  |  |
| 97                  | 494                                                                                                                | 762     |  |  |  |
| 98                  | 488                                                                                                                | 754     |  |  |  |
| 99                  | 482                                                                                                                | 745     |  |  |  |
| 100                 | 476                                                                                                                | 737     |  |  |  |
| 101                 | 471                                                                                                                | 728     |  |  |  |
| 102                 | 465                                                                                                                | 720     |  |  |  |
| 103                 | 459                                                                                                                | 711     |  |  |  |
| 104                 | 453                                                                                                                | 702     |  |  |  |
| 105                 | 448                                                                                                                | 694     |  |  |  |
| 106                 | 442                                                                                                                | 685     |  |  |  |
| 107                 | 436                                                                                                                | 677     |  |  |  |
| 108                 | 430                                                                                                                | 668     |  |  |  |
| 109                 | 425                                                                                                                | 660     |  |  |  |
| 110                 | 419                                                                                                                | 651     |  |  |  |
| 111                 | 413                                                                                                                | 642     |  |  |  |
| 112                 | 407                                                                                                                | 634     |  |  |  |
| 113                 | 401                                                                                                                | 625     |  |  |  |
| 114                 | 396                                                                                                                | 617     |  |  |  |
| 115                 | 390                                                                                                                | 608     |  |  |  |
| 116                 | 384                                                                                                                | 599     |  |  |  |
| 117                 | 378                                                                                                                | 591     |  |  |  |
| 118                 | 372                                                                                                                | 582     |  |  |  |
| 119                 | 367                                                                                                                | 573     |  |  |  |
| 120                 | 361                                                                                                                | 565     |  |  |  |
| 121                 | 355                                                                                                                | 556     |  |  |  |
| 122                 | 349                                                                                                                | 547     |  |  |  |
| 123                 | 343                                                                                                                | 539     |  |  |  |
| 124                 | 337                                                                                                                | 530     |  |  |  |
| 125                 | 332                                                                                                                | 521     |  |  |  |
| 126                 | 326                                                                                                                | 513     |  |  |  |
| 127                 | 320                                                                                                                | 504     |  |  |  |
| 127                 | 314                                                                                                                | 495     |  |  |  |
| 128                 | 308                                                                                                                | 495     |  |  |  |
| 130                 | 302                                                                                                                | 407 478 |  |  |  |
| 150                 | 302                                                                                                                | 410     |  |  |  |







SNIS150A - SEPTEMBER 2008-REVISED MARCH 2013

| Table 1. LM94023 Temperature-Voltage Transfer Table <sup>(1)</sup> (continued) |  |
|--------------------------------------------------------------------------------|--|
|--------------------------------------------------------------------------------|--|

| Temperature<br>(°C) | GS = 0<br>(mV) | GS = 1<br>(mV) |
|---------------------|----------------|----------------|
| 131                 | 296            | 469            |
| 132                 | 291            | 460            |
| 133                 | 285            | 452            |
| 134                 | 279            | 443            |
| 135                 | 273            | 434            |
| 136                 | 267            | 425            |
| 137                 | 261            | 416            |
| 138                 | 255            | 408            |
| 139                 | 249            | 399            |
| 140                 | 243            | 390            |
| 141                 | 237            | 381            |
| 142                 | 231            | 372            |
| 143                 | 225            | 363            |
| 144                 | 219            | 354            |
| 145                 | 213            | 346            |
| 146                 | 207            | 337            |
| 147                 | 201            | 328            |
| 148                 | 195            | 319            |
| 149                 | 189            | 310            |
| 150                 | 183            | 301            |

Although the LM94023 is very linear, its response does have a slight downward parabolic shape. This shape is very accurately reflected in the LM94023 Transfer Table. For a linear approximation, a line can easily be calculated over the desired temperature range from the Table using the two-point equation:

$$V - V_{1} = \left(\frac{V_{2} - V_{1}}{T_{2} - T_{1}}\right) \times (T - T_{1})$$

(1)

Where V is in mV, T is in °C,  $T_1$  and  $V_1$  are the coordinates of the lowest temperature,  $T_2$  and  $V_2$  are the coordinates of the highest temperature.

For example, if we want to determine the equation of a line with the Gain Setting at GS1 = 0 and GS0 = 0, over a temperature range of 20°C to 50°C, we would proceed as follows:

$$V - 925 \text{ mV} = \left(\frac{760 \text{ mV} - 925 \text{ mV}}{50^{\circ}\text{C} - 20^{\circ}\text{C}}\right) \times (\text{T} - 20^{\circ}\text{C})$$
(2)  
$$V - 925 \text{ mV} = (-5.50 \text{ mV} / {^{\circ}\text{C}}) \times (\text{T} - 20^{\circ}\text{C})$$
(3)  
$$V = (-5.50 \text{ mV} / {^{\circ}\text{C}}) \times \text{T} + 1035 \text{ mV}$$
(4)

Using this method of linear approximation, the transfer function can be approximated for one or more temperature ranges of interest.

### Mounting and Thermal Conductivity

The LM94023 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface.

To ensure good thermal conductivity, the backside of the LM94023 die is directly attached to the GND pin (Pin 2). The temperatures of the lands and traces to the other leads of the LM94023 will also affect the temperature reading.

Copyright © 2008–2013, Texas Instruments Incorporated

www.ti.com

STRUMENTS

Alternatively, the LM94023 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM94023 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates a short circuit from the output to ground or  $V_{DD}$ , the output from the LM94023 will not be correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces.

The thermal resistance junction to ambient  $(\theta_{JA})$  is the parameter used to calculate the rise of a device junction temperature due to its power dissipation. The equation used to calculate the rise in the LM94023's die temperature is

$$T_{J} = T_{A} + \theta_{JA} \left[ (V_{DD}I_{Q}) + (V_{DD} - V_{O}) I_{L} \right]$$

(5)

where  $T_A$  is the ambient temperature,  $I_Q$  is the quiescent current,  $I_L$  is the load current on the output, and  $V_O$  is the output voltage. For example, in an application where  $T_A = 30$  °C,  $V_{DD} = 5$  V,  $I_{DD} = 9$  µA, Gain Select = 11,  $V_{OUT} = 2.231$  mV, and  $I_L = 2$  µA, the junction temperature would be 30.021 °C, showing a self-heating error of only 0.021 °C. Since the LM94023's junction temperature is the actual temperature being measured, care should be taken to minimize the load current that the LM94023 is required to drive. Table 2 shows the thermal resistance of the LM94023.

#### Table 2. LM94023 Thermal Resistance

| Device Number                 | NS Package<br>Number | Thermal<br>Resistance (θ <sub>JA</sub> ) |
|-------------------------------|----------------------|------------------------------------------|
| LM94023BITME,<br>LM94023BITMX | YFQ0004              | 122.6 °C/W                               |

#### Output and Noise Considerations

A push-pull output gives the LM94023 the ability to sink and source significant current. This is beneficial when, for example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications the source current is required to quickly charge the input capacitor of the ADC. See the Applications Circuits section for more discussion of this topic. The LM94023 is ideal for this and other applications which require strong source or sink current.

The LM94023's supply-noise gain (the ratio of the AC signal on  $V_{OUT}$  to the AC signal on  $V_{DD}$ ) was measured during bench tests. It's typical attenuation is shown in the Typical Performance Characteristics section. A load capacitor on the output can help to filter noise.

For operation in very noisy environments, some bypass capacitance should be present on the supply within approximately 2 inches of the LM94023.

#### Capacitive Loads

The LM94023 handles capacitive loading well. In an extremely noisy environment, or when driving a switched sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any precautions, the LM94023 can drive a capacitive load less than or equal to 1100 pF as shown in Figure 13. For capacitive loads greater than 1100 pF, a series resistor may be required on the output, as shown in Figure 14.

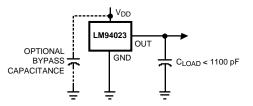
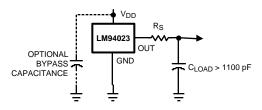




Figure 13. LM94023 No Decoupling Required for Capacitive Loads Less than 1100 pF



#### Figure 14. LM94023 with Series Resistor for Capacitive Loading Greater than 1100 pF

| C <sub>LOAD</sub> | Minimum R <sub>S</sub> |
|-------------------|------------------------|
| 1.1 nF to 99 nF   | 3 kΩ                   |
| 100 nF to 999 nF  | 1.5 kΩ                 |
| 1 µF              | 800 Ω                  |

#### **Output Voltage Shift**

The LM94023 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the operating range of the device. The location of the shift is determined by the relative levels of  $V_{DD}$  and  $V_{OUT}$ . The shift typically occurs when  $V_{DD}$ -  $V_{OUT}$  = 1.0V.

This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in  $V_{DD}$  or  $V_{OUT}$ . Since the shift takes place over a wide temperature change of 5°C to 20°C,  $V_{OUT}$  is always monotonic. The accuracy specifications in the Electrical Characteristics table already include this possible shift.

#### Selectable Gain for Optimization and In Situ Testing

The Gain Select digital inputs can be tied to the rails or can be driven from digital outputs such as microcontroller GPIO pins. In low-supply voltage applications, the ability to reduce the gain to -5.5 mV/°C allows the LM94023 to operate over the full -50 °C to 150 °C range. When a larger supply voltage is present, the gain can be increased as high as -8.2 mV/°C. The larger gain is optimal for reducing the effects of noise (for example, noise coupling on the output line or quantization noise induced by an analog-to-digital converter which may be sampling the LM94023 output).

Another application advantage of the digitally selectable gain is the ability to perform dynamic testing of the LM94023 while it is running in a system. By toggling the logic levels of the gain select pin and monitoring the resultant change in the output voltage level, the host system can verify the functionality of the LM94023.



www.ti.com

#### **Applications Circuits**

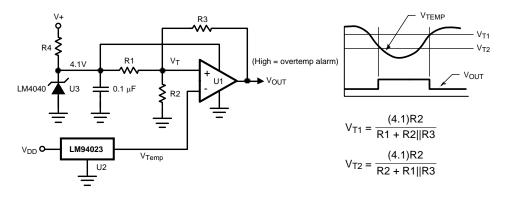



Figure 15. Celsius Thermostat

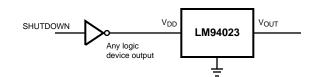
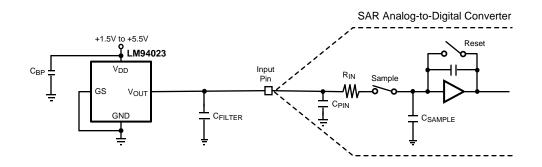




Figure 16. Conserving Power Dissipation with Shutdown



Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such as the LM94023 temperature sensor and many op amps. This requirement is easily accommodated by the addition of a capacitor ( $C_{FILTER}$ ). The size of  $C_{FILTER}$  depends on the size of the sampling capacitor and the sampling frequency. Since not all ADCs have identical input stages, the charge requirements will vary. This general ADC application is shown as an example only.

#### Figure 17. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage

### **REVISION HISTORY**

Changes from Original (March 2013) to Revision A



www.ti.com



15

Submit Documentation Feedback



11-Apr-2013

### **PACKAGING INFORMATION**

| Orderable Device  | Status | Package Type | •       | Pins | Package | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Top-Side Markings | Samples |
|-------------------|--------|--------------|---------|------|---------|----------------------------|------------------|--------------------|--------------|-------------------|---------|
|                   | (1)    |              | Drawing |      | Qty     | (2)                        |                  | (3)                |              | (4)               |         |
| LM94023BITME/NOPB | ACTIVE | DSBGA        | YFQ     | 4    | 250     | Green (RoHS<br>& no Sb/Br) | SNAGCU           | Level-1-260C-UNLIM | -50 to 150   |                   | Samples |
| LM94023BITMX/NOPB | ACTIVE | DSBGA        | YFQ     | 4    | 3000    | Green (RoHS<br>& no Sb/Br) | SNAGCU           | Level-1-260C-UNLIM | -50 to 150   |                   | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

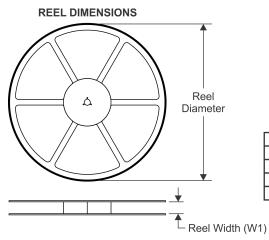
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

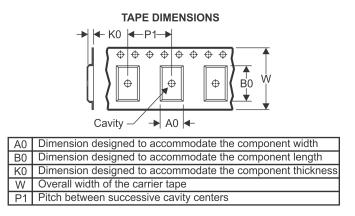
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


# PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

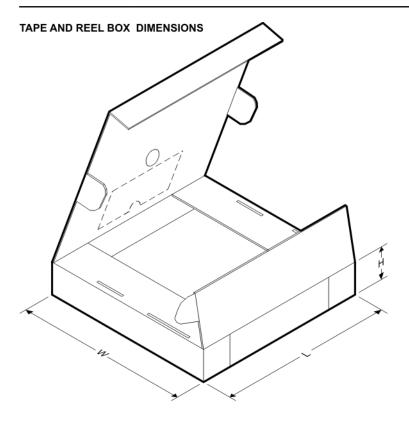
### TAPE AND REEL INFORMATION





### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

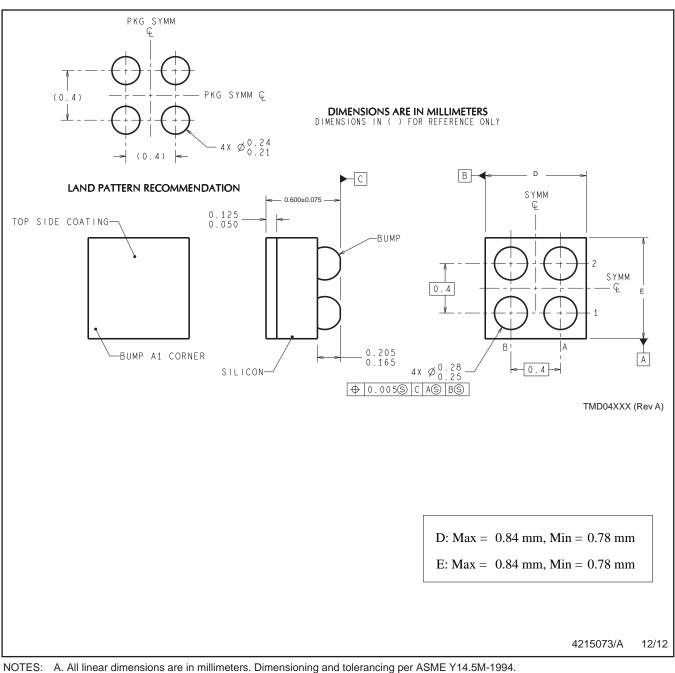



| *All dimensions are nominal |                 |                    |   |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| LM94023BITME/NOPB           | DSBGA           | YFQ                | 4 | 250  | 178.0                    | 8.4                      | 0.89       | 0.89       | 0.76       | 4.0        | 8.0       | Q1               |
| LM94023BITMX/NOPB           | DSBGA           | YFQ                | 4 | 3000 | 178.0                    | 8.4                      | 0.89       | 0.89       | 0.76       | 4.0        | 8.0       | Q1               |

TEXAS INSTRUMENTS

www.ti.com

# PACKAGE MATERIALS INFORMATION


26-Mar-2013



\*All dimensions are nominal

| Device            | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| LM94023BITME/NOPB | DSBGA        | YFQ             | 4    | 250  | 210.0       | 185.0      | 35.0        |
| LM94023BITMX/NOPB | DSBGA        | YFQ             | 4    | 3000 | 210.0       | 185.0      | 35.0        |

# YFQ0004



B. This drawing is subject to change without notice.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                          | Applications                  |                                   |
|------------------------------|--------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio         | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com         | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com     | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com              | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com               | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks        | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com         | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com             | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com             | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com   | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com          |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap          | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconne | ectivity                      |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated