

DS89C21 Differential CMOS Line Driver and Receiver Pair

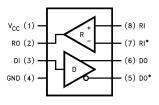
Check for Samples: DS89C21

FEATURES

- Meets TIA/EIA-422-A (RS-422) and CCITT V.11 Recommendation
- LOW POWER Design—15 mW Typical
- Guaranteed AC Parameters:
 - Maximum Driver Skew 2.0 ns
 - Maximum Receiver Skew 4.0 ns
- Extended Temperature Range: -40°C to +85°C
- Available in SOIC Packaging
- Operates over 20 Mbps
- Receiver OPEN Input Failsafe Feature

DESCRIPTION

The DS89C21 is a differential CMOS line driver and receiver pair, designed to meet the requirements of TIA/EIA-422-A (RS-422) electrical characteristics interface standard. The DS89C21 provides one driver and one receiver in a minimum footprint. The device is offered in an 8-pin SOIC package.


The CMOS design minimizes the supply current to 6 mA, making the device ideal for use in battery powered or power conscious applications.

The driver features a fast transition time specified at 2.2 ns, and a maximum differential skew of 2 ns making the driver ideal for use in high speed applications operating above 10 MHz.

The receiver can detect signals as low as 200 mV, and also incorporates hysteresis for noise rejection. Skew is specified at 4 ns maximum.

The DS89C21 is compatible with TTL and CMOS levels (DI and RO).

Connection Diagram

See Package Number D (R-PDSO-G8)

Truth Table Driver

Input	Outputs					
DI	DO	DO*				
Н	Н	L				
L	L	Н				

Truth Table Receiver

Inputs	Output							
RI–RI*	RO							
V _{DIFF} ≥ +200 mV	Н							
V _{DIFF} ≤ −200 mV	L							
OPEN ⁽¹⁾	Н							

(1) Non-terminated

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

DS89C21

SNLS091C-JUNE 1998-REVISED APRIL 2013

TEXAS INSTRUMENTS

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)(3)

Supply Voltage (V _{CC})	7V
Driver Input Voltage (DI)	-1.5V to V _{CC} + 1.5V
Driver Output Voltage (DO, DO *)	-0.5V to +7V
Receiver Input Voltage—V CM	
(RI, RI [*])	±14V
Differential Receiver Input	±14V
Voltage—V _{DIFF} (RI, RI [*])	
Receiver Output Voltage (RO)	-0.5V to V _{CC} +0.5V
Receiver Output Current (RO)	±25 mA
Storage Temperature Range	
(T _{STG})	−65°C to +150°C
Lead Temperature (T _L)	+260°C
(Soldering 4 sec.)	
Maximum Junction Temperature	150°C
Maximum Package Power Dissipation @+25°C	
D Package	714 mW
Derate D Package	5.7 mW/°C above +25°C

(1) Absolute Maximum Ratings are those values beyond which the safety of the device cannot be ensured. They are not meant to imply that the devices should be operated at these limits. The tables of Electrical Characteristics specify conditions for device operation.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

(3) ESD Rating: HBM (1.5 kΩ, 100 pF) all pins ≥ 2000V.EIAJ (0Ω, 200 pF) ≥ 250V

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.50	5.50	V
Operating Temperature (T _A)	-40	+85	°C
Input Rise or Fall Time (DI)		500	ns

SNLS091C - JUNE 1998-REVISED APRIL 2013

www.ti.com

Electrical Characteristics ⁽¹⁾⁽²⁾

Over recommended supply voltage and operating temperature ranges, unless otherwise specified.

Symbol	Parameter	Co	Pin	Min	Тур	Max	Units	
DRIVER C	HARACTERISTICS							
VIH	Input Voltage HIGH				2.0		V _{CC}	V
V _{IL}	Input Voltage LOW			DI	GND		0.8	V
I _{IH} , I _{IL}	Input Current	V _{IN} = V _{CC} , GND, 2.0	0V, 0.8V			0.05	±10	μA
V _{CL}	Input Clamp Voltage	I _{IN} = −18 mA					-1.5	V
V _{OD1}	Unloaded Output Voltage	No Load		DO,		4.2	6.0	V
V _{OD2}	Differential Output Voltage	$R_{L} = 100\Omega$		DO*	2.0	3.0		V
ΔV_{OD2}	Change in Magnitude of V OD2					5.0	400	mV
	for Complementary Output States							
V _{OD3}	Differential Output Voltage	$R_{L} = 150\Omega$			2.1	3.1		V
V _{OD4}	Differential Output Voltage	R _L = $3.9 \text{ k}\Omega$				4.0	6.0	V
V _{OC}	Common Mode Voltage	$R_{L} = 100\Omega$				2.0	3.0	V
ΔV _{OC}	Change in Magnitude of V _{OC}					2.0	400	mV
	for Complementary Output States							
I _{OSD}	Output Short Circuit Current	V _{OUT} = 0V	$V_{OUT} = 0V$			-115	-150	mA
I _{OFF}	Output Leakage Current	$V_{CC} = 0V$	$V_{CC} = 0V$ $V_{OUT} = +6V$			0.03	+100	μA
			$V_{OUT} = -0.25V$			-0.08	-100	μA
RECEIVER	R CHARACTERISTICS							
V _{TL} , V _{TH}	Differential Thresholds	$V_{IN} = +7V, 0V, -7V$		RI,	-200	±25	+200	mV
V _{HYS}	Hysteresis	$V_{CM} = 0V$		RI*	20	50		mV
R _{IN}	Input Impedance	V _{IN} = −7V, +7V, Oth	ner = 0V		5.0	9.5		kΩ
I _{IN}	Input Current	Other Input = 0V,	V _{IN} = +10V			+1.0	+1.5	mA
		V_{CC} = 5.5V and	$V_{IN} = +3.0V$		0	+0.22		mA
		$V_{CC} = 0V$	$V_{IN} = +0.5V$			-0.04		mA
			$V_{IN} = -3V$		0	-0.41		mA
			$V_{IN} = -10V$			-1.25	-2.5	mA
V _{OH}	Output HIGH Voltage	I _{OH} = −6 mA	$V_{DIFF} = +1V$	RO	3.8	4.9		V
			$V_{DIFF} = OPEN$		3.8	4.9		V
V _{OL}	Output LOW Voltage	I _{OL} = +6 mA, V _{DIFF} = -1V				0.08	0.3	V
I _{OSR}	Output Short Circuit Current	$V_{OUT} = 0V$			-25	-85	-150	mA
DRIVER A	ND RECEIVER CHARACTERISTICS							
I _{CC}	Supply Current	No Load	$DI = V_{CC} \text{ or } GND$	V _{CC}		3.0	6	mA
			DI = 2.4V or 0.5V			3.8	12	mA

(1) Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified.

(2) All typicals are given for $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

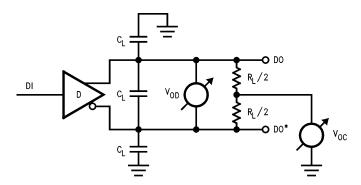
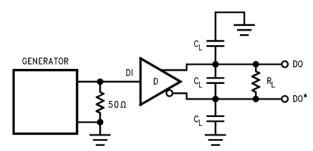
Switching Characteristics ⁽¹⁾⁽²⁾

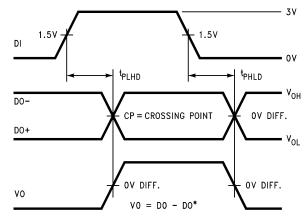
Over recommended supply voltage and operating temperature ranges, unless otherwise specified.

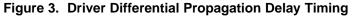
Symbol	Parameter		Conditions	Min	Тур	Max	Units
DIFFEREN	ITIAL DRIVER CHARACTERISTICS	·					
t _{PLHD}	Propagation Delay LOW to HIGH	$R_L = 100\Omega$	(Figure 2 Figure 3)	2	4.9	10	ns
t _{PHLD}	Propagation Delay HIGH to LOW	C _L = 50 pF		2	4.5	10	ns
t _{SKD}	Skew, t _{PLHD} -t _{PHLD}				0.4	2.0	ns
t _{TLH}	Transition Time LOW to HIGH		(Figure 2 Figure 4)		2.2	9	ns
t _{THL}	Transition Time HIGH to LOW				2.1	9	ns
RECEIVER	CHARACTERISTICS	•				*	
t _{PLH}	Propagation Delay LOW to HIGH	C _L = 50 pF	(Figure 5 Figure 6)	6	18	30	ns
t _{PHL}	Propagation Delay HIGH to LOW	$V_{DIFF} = 2.5V$		6	17.5	30	ns
t _{SK}	Skew, t _{PLH} -t _{PHL}	$V_{CM} = 0V$			0.5	4.0	ns
t _r	Rise Time		(Figure 7)		2.5	9	ns
t _f	Fall Time				2.1	9	ns

 $\begin{array}{ll} \mbox{(1)} & \mbox{All typicals are given for } V_{CC} = 5.0V \mbox{ and } T_A = 25^\circ C. \\ \mbox{(2)} & \mbox{f} = 1 \mbox{ MHz, } t_r \mbox{ and } t_f \leq 6 \mbox{ ns.} \end{array}$

Parameter Measurement Information


Figure 1. V_{OD} and V_{OC} Test Circuit



f = 1 MHz, tr and tf $\leq 6 ns$.

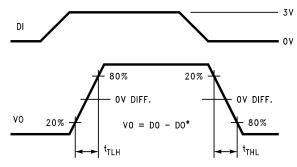
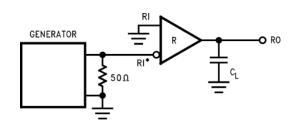



Figure 4. Driver Differential Transition Timing

f = 1 MHz, tr and tf ≤ 6 ns.

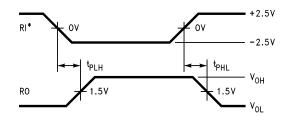


Figure 6. Receiver Propagation Delay Timing

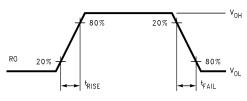


Figure 7. Receiver Rise and Fall Times

SNLS091C -JUNE 1998-REVISED APRIL 2013

REVISION HISTORY

Cł	hanges from Revision B (April 2013) to Revision C	Page	¢
•	Changed layout of National Data Sheet to TI format	6	3

25-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	-	Pins	-	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
DS89C21TM	ACTIVE	SOIC	D	8	95	TBD	Call TI	Call TI	-40 to 85	DS89C 21TM	Samples
DS89C21TM/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	DS89C 21TM	Samples
DS89C21TMX	ACTIVE	SOIC	D	8	2500	TBD	Call TI	Call TI	-40 to 85	DS89C 21TM	Samples
DS89C21TMX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	DS89C 21TM	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

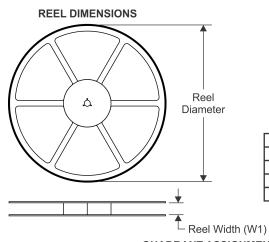
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

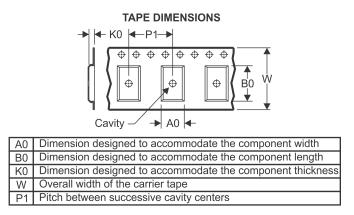
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM


25-Apr-2013

PACKAGE MATERIALS INFORMATION

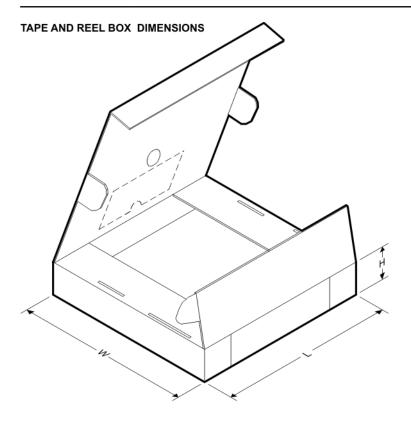

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

*All dimensions are nominal

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

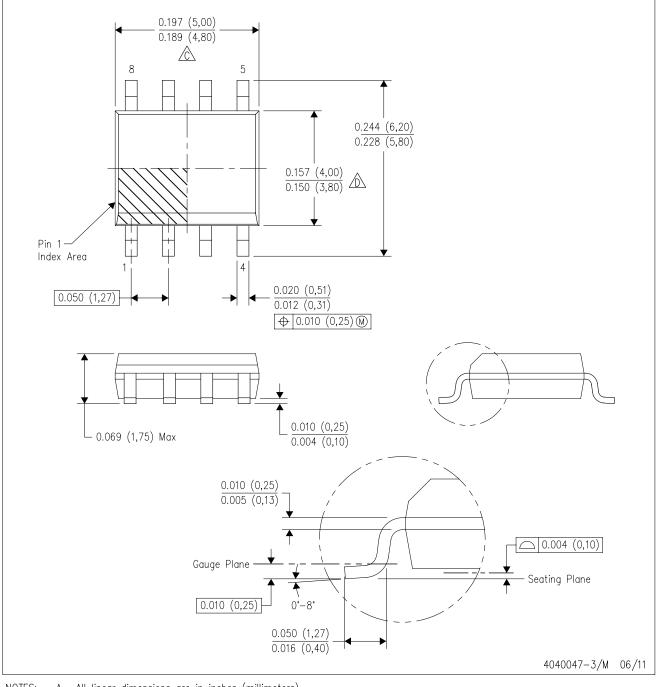

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS89C21TMX	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
DS89C21TMX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

8-May-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS89C21TMX	SOIC	D	8	2500	349.0	337.0	45.0
DS89C21TMX/NOPB	SOIC	D	8	2500	349.0	337.0	45.0

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated