www.ti.com

DS15EA101 0.15 to 1.5 Gbps Adaptive Cable Equalizer with LOS Detection

Check for Samples: DS15EA101

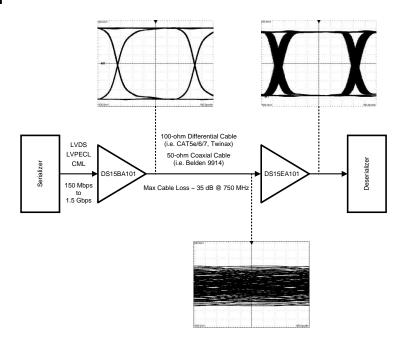
FEATURES

- Automatic Equalization of Coaxial, Twin-Ax and Twisted Pair Cables
- High Data Rates: 150 Mbps to 1.5+ Gbps
- Up to 35 dB of Boost at 750 MHz
- LOS Detection and Output Enable
- Single-Ended or Differential Input
- 50Ω Differential Outputs
- Low Power Operation, 210 mW (typ) at 1.5 Gbps
- Industrial -40°C to +85°C Temperature
- Space-Saving 4 x 4 mm WQFN-16 Package

APPLICATIONS

- Cable Extention Applications
- Security Cameras
- Remote LCDs and LED Panels
- Data Recovery Equalization

DESCRIPTION


The DS15EA101 is an adaptive equalizer optimized for equalizing data transmitted over copper cables. The DS15EA101 operates over a wide range of data rates from 150 Mbps to 1.5+ Gbps and automatically adapts to equalize any cable length from zero meters to lengths that attenuate the signal by 35 dB at 750 MHz.

The DS15EA101 allows either single-ended or differential input drive. This enables equalization of coaxial cables as well as differential twin-ax and twisted pair cables.

Additional features include an LOS output and an output enable which, when tied together, disable the output when no signal is present.

The DS15EA101 is powered from a single 3.3V supply and consumes 210 mW at 1.5 Gbps. It operates over the full -40°C to +85°C industrial temperature range and is available in a space saving 4 x 4 mm WQFN-16 package which allows for high density placement of components in multi-channel applications.

Typical Application

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings(1)

-0.5V to 3.6V
-0.3V to V _{CC} +0.3V
−65°C to +150°C
+150°C
+260°C
+42.1°C/W +8.2°C/W
8 kV
250V

^{(1) &}quot;Absolute Maximum Ratings" are those parameter values beyond which the life and operation of the device cannot be ensured. The stating herein of these maximums shall not be construed to imply that the device can or should be operated at or beyond these values. The table of Electrical Characteristics specifies acceptable device operating conditions.

Recommended Operating Conditions

Supply Voltage (VCC)	3.3V ±5%
Input Coupling Capacitance	1.0 µF
Loop Capacitor (Connected between CAP+ and CAP-)	1.0 µF
Operating Free Air Temperature (T _A)	-40°C to +85°C

DC Electrical Characteristics

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified (1) (2).

Symbol	Parameter	Conditions	Reference	Min	Тур	Max	Units
V_{CM}	Input Common Mode Voltage		IN+, IN-		1.9		V
V _{IN}	Input Voltage					⁽³⁾⁽⁴⁾ 950	mV_{P-P}
V _{OS}	Output Common Mode Voltage		OUT+, OUT-		V _{CC} – V _{OUT} /2		V
V _{OUT}	Output Voltage Swing	50Ω load, differential			750		mV_{P-P}
V_{LOS}	LOS Output Voltage	Valid signal not present	LOS	2.6			V
		Valid signal present				0.4	V
V _{IN(EN)}	EN Input Voltage	Min to disable outputs	EN	3.0			V
		Max to enable outputs				0.8	V
I _{CC}	Supply Current	(5)			63	77	mA

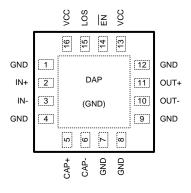
⁽¹⁾ Current flow into device pins is defined as positive. Current flow out of device pins is defined as negative. All voltages are stated referenced to 0 volts.

⁽²⁾ Typical values are stated for V_{CC} = +3.3V and T_A = +25°C.

⁽³⁾ Specification is ensured by characterization.

⁽⁴⁾ The maximum input voltage amplitude assumes a DC-balanced signal.

⁽⁵⁾ Supply current depends on the amount of cable being equalized. The current is highest for short cable and decreases as the cable length is increased.


AC Electrical Characteristics

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified (1).

Symbol	Parameter	Conditions	Reference	Min	Тур	Max	Units
BR _{IN}	Input Data Rate		IN+, IN-	150		1500	Mbps
t _{TRJ}	Total Residual Jitter @ BER-12	1.5 Gbps 25m CAT5e (Belden 1700A),			0.25		UI
		1.0 Gbps 50m CAT5e (Belden 1700A),			0.25		UI
		0.5 Gbps 100m CAT5e (Belden 1700A),			0.25		UI
		1.5 Gbps 50m CAT7 (Siemon Tera),			0.25		UI
		1.5 Gbps 75m CAT7 (Siemon Tera),			0.30		UI
		1.0 Gbps 100m CAT7 (Siemon Tera),			0.40		UI
		1.5 Gbps 200m Belden 9914,			0.25		UI
tTLH	Transition Time from Low to High	20% – 80%, (3)	OUT+, OUT-		100	220	ps
tTHL	Transition Time from High to Low	20% – 80%, ⁽³⁾			100	220	ps
R _{OUT}	Output Resistance	single-ended, (4)			50		Ω

- Typical values are stated for V_{CC} = +3.3V and T_A = +25°C. The total residual jitter at BER-12 was calculated as DJ+14.1xRJ, where DJ is deterministic jitter and RJ is random jitter. The jitter is expressed as a portion of a unit interval (UI). One UI is a reciprocal of a bit rate (or data rate). For example, a 1.5 Gbps (gigabit per second) signal has 1 / (1.5 Gb/s) = 666.67 ps (picosecond) unit interval. A 0.25 UI jitter is equivalent to 0.25 x 666.67 ps = 166.67 ps.
- Specification is ensured by characterization.
- Specification is ensured by design.

CONNECTION DIAGRAM

16-Pad WQFN Package Number RGH0016A

Product Folder Links: DS15EA101

PIN DESCRIPTIONS

Pin #	Name	Description
1	GND	Ground pin.
2	IN+	Non-inverting input pin.
3	IN-	Inverting input pin.
4	GND	Ground pin.
5	CAP+	Loop filter positive pin.
6	CAP-	Loop filter negative pin.
7	GND	Ground pin.
8	GND	Ground pin.
9	GND	Ground pin.
10	OUT-	Inverting output pin.
11	OUT+	Non-inverting output pin.
12	GND	Ground pin.
13	VCC	Power supply pin.
14	EN	Output enable pin.
15	LOS	Los of signal circuitry output pin.
16	VCC	Power supply pin.

DEVICE OPERATION

Input Interfacing

The DS15EA101 accepts either differential or single-ended input. The input must be AC coupled. Transformer coupling is not supported. If the signal is differential, its amplitude must be 800 mVp-p ±10% (400 mV single-ended). If the signal is single-ended, its amplitude must be 800 mV ±10%.

Output Interfacing

The DS15EA101 uses current mode outputs. They are internally terminated with 50Ω . The following two figures illustrate typical DC-coupled interface to common differential receivers and assume that the receivers have high impedance inputs. While most receivers have an input common mode voltage range that can accomodate CML signals, it is recommended to check respective receiver's datasheet prior to implementing the suggested interface implementations.

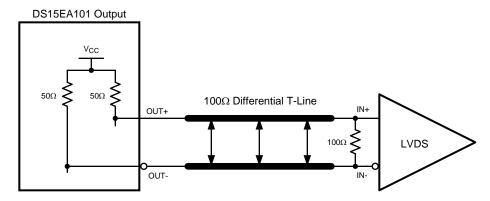


Figure 1. Typical DS15EA101 Output DC-Coupled Interface to an LVDS Receiver

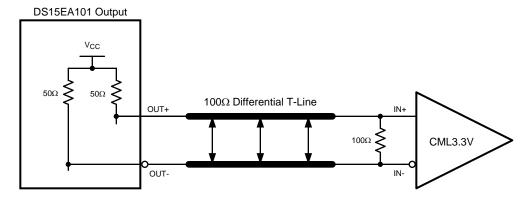


Figure 2. Typical DS15EA101 Output DC-Coupled Interface to a CML Receiver

Cable Extender Application

The DS15EA101 together with the DS15BA101 form a cable extender chipset optimized for extending serial data streams from serializer/deserializer (SerDes) pairs and field programmable gate arrays (FPGAs) over 100Ω differential (i.e. CAT5e/6/7 and twinax) and 50Ω coaxial cables. Setting correct DS15BA101 output amplitude and proper cable termination are keys for optimal operation. The following two figures show recommended chipset configuration for 100Ω differential and 50Ω coaxial cables.

Product Folder Links: DS15EA101

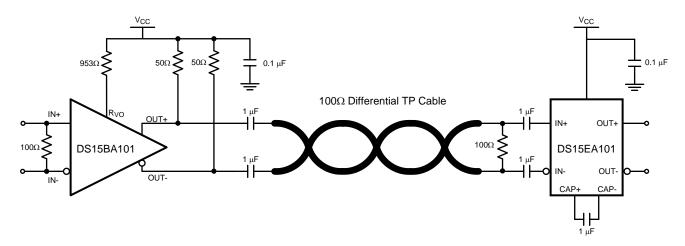


Figure 3. Cable Extender Chipset Connection Diagram for 100Ω Differential Cables

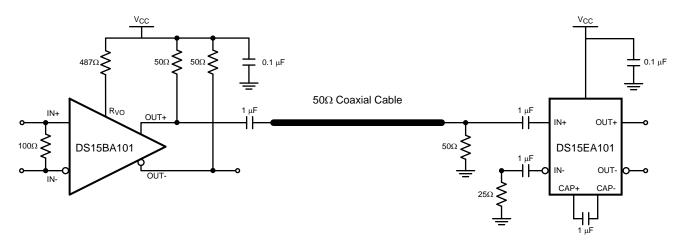
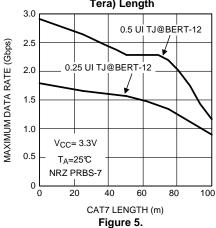
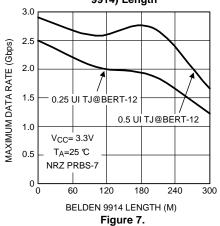


Figure 4. Cable Extender Chipset Connection Diagram for 50Ω Coaxial Cables

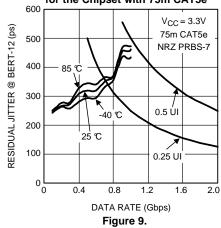
Reference Design


There is a complete reference design (P/N: DriveCable02EVK) available for evaluation of the cable extender chipset (DS15BA101 and DS15EA101).

For more information visit http://www.ti.com/tool/drivecable02evk



Typical Performance


Maximum Data Rate as a Function of CAT7 (Siemon CAT7 Tera) Length

Maximum Data Rate as a Function of 50Ω Coaxial (Belden 9914) Length

Residual Jitter as a Function of Data Rate and Temperature for the Chipset with 75m CAT5e

Maximum Data Rate as a Function of CAT5e (Belden 1700A) Length

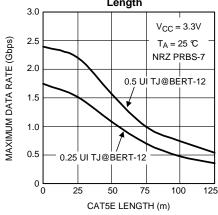
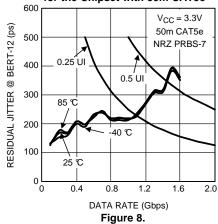
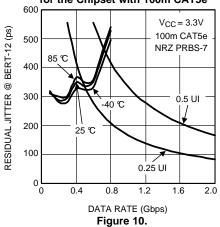




Figure 6.

Residual Jitter as a Function of Data Rate and Temperature for the Chipset with 50m CAT5e

Residual Jitter as a Function of Data Rate and Temperature for the Chipset with 100m CAT5e

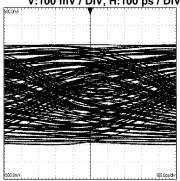


Figure 11.

A 1.0 Gbps NRZ PRBS-7 After 50m CAT5e V:100 mV / DIV, H:150 ps / DIV

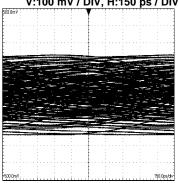


Figure 13.

A 0.5 Gbps NRZ PRBS-7 After 100m CAT5e V:100 mV / DIV, H:400 ps / DIV

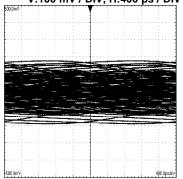


Figure 15.

An Equalized 1.5 Gbps NRZ PRBS-7 After 25m CAT5e V:100 mV / DIV, H:100 ps / DIV

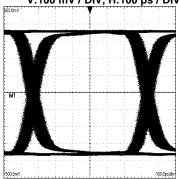


Figure 12.

An Equalized 1.0 Gbps NRZ PRBS-7 After 50m CAT5e V:100 mV / DIV, H:150 ps / DIV

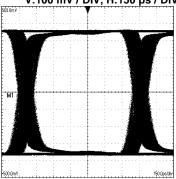


Figure 14.

An Equalized 0.5 Gbps NRZ PRBS-7 After 100m CAT5e V:100 mV / DIV, H:400 ps / DIV

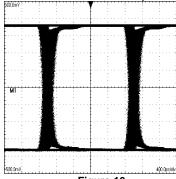


Figure 16.

Typical Performance (continued) A 1.5 Gbps NRZ PRBS-7 After 50m CAT7 V:100 mV / DIV, H:100 ps / DIV V:

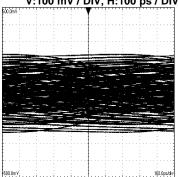


Figure 17.

An Equalized 1.5 Gbps NRZ PRBS-7 After 75m CAT7 V:100 mV / DIV, H:100 ps / DIV

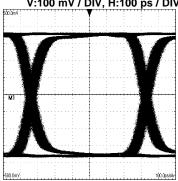


Figure 19.

A 1.0 Gbps NRZ PRBS-7 After 100m CAT7 V:100 mV / DIV, H:150 ps / DIV

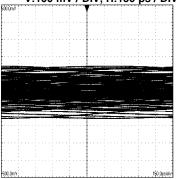


Figure 21.

An Equalized 1.5 Gbps NRZ PRBS-7 After 50m CAT7 V:100 mV / DIV, H:100 ps / DIV

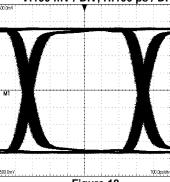


Figure 18.

A 1.5 Gbps NRZ PRBS-7 After 75m CAT7 V:100 mV / DIV, H:100 ps / DIV

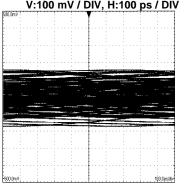
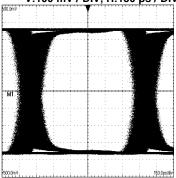
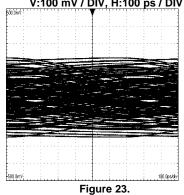


Figure 20.

An Equalized 1.0 Gbps NRZ PRBS-7 After 100m CAT7 V:100 mV / DIV, H:150 ps / DIV




Figure 22.

Copyright © 2006-2013, Texas Instruments Incorporated

Typical Performance (continued)
A 1.5 Gbps NRZ PRBS-7 After 200m Belden 9914
V:100 mV / DIV, H:100 ps / DIV

An Equalized 1
9914

An Equalized 1.5 Gbps NRZ PRBS-7 After 200m Belden 9914, V:100 mV / DIV, H:100 ps / DIV

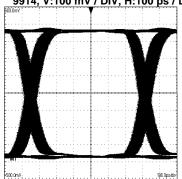


Figure 24.

REVISION HISTORY

Changes from Revision G (April 2013) to Revision H						
•	Changed layout of National Data Sheet to TI format		1(

Product Folder Links: DS15EA101

PACKAGE OPTION ADDENDUM

12-Apr-2013

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
DS15EA101SQ/NOPB	ACTIVE	WQFN	RGH	16	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	15EA101	Samples
DS15EA101SQE/NOPB	ACTIVE	WQFN	RGH	16	250	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	15EA101	Samples
DS15EA101SQX/NOPB	ACTIVE	WQFN	RGH	16	4500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	15EA101	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb-Free products are suitable for use in specified lead-free processes.

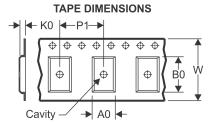
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

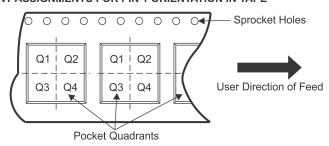
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

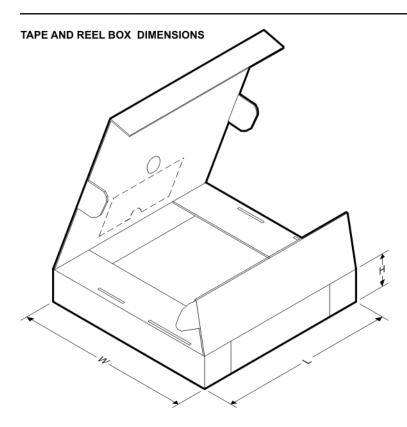
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Apr-2013


TAPE AND REEL INFORMATION

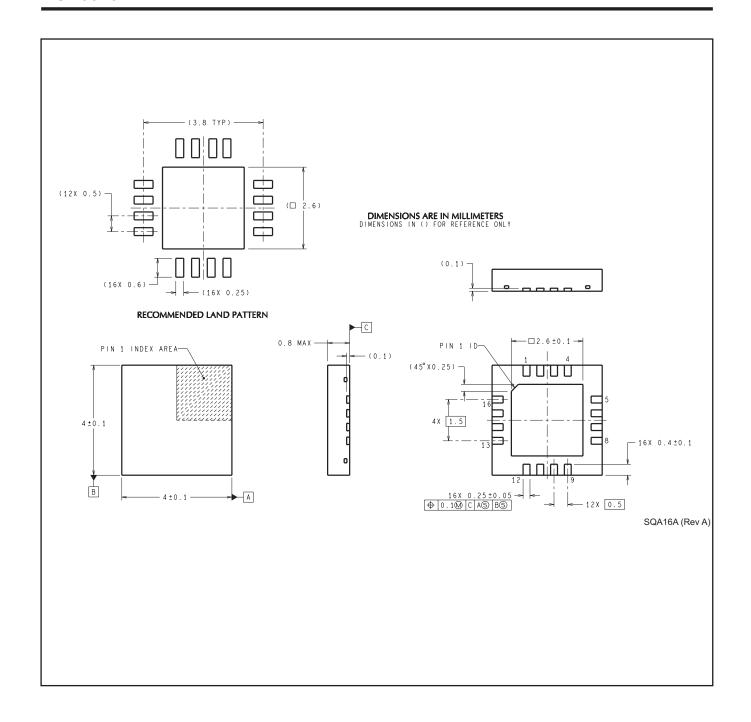
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS15EA101SQ/NOPB	WQFN	RGH	16	1000	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
DS15EA101SQE/NOPB	WQFN	RGH	16	250	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
DS15EA101SQX/NOPB	WQFN	RGH	16	4500	330.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1


PACKAGE MATERIALS INFORMATION

www.ti.com 24-Apr-2013

*All dimensions are nominal

7 III GITTIOTIOTOTIO GITO TIOTITICA							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS15EA101SQ/NOPB	WQFN	RGH	16	1000	213.0	191.0	55.0
DS15EA101SQE/NOPB	WQFN	RGH	16	250	213.0	191.0	55.0
DS15EA101SQX/NOPB	WQFN	RGH	16	4500	367.0	367.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>