

www.ti.com

DS91M124 125 MHz 1:4 M-LVDS Repeater with LVCMOS Input

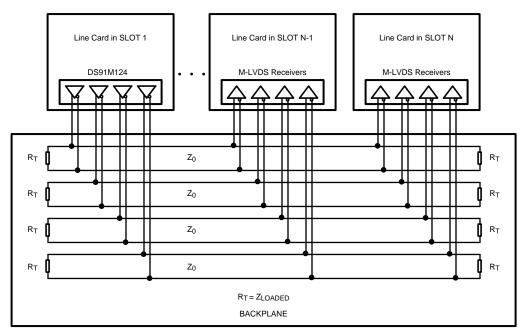
Check for Samples: DS91M124

FEATURES

- DC 125 MHz / 250 Mbps Low Jitter, Low Skew, Low Power Operation
- Independent Driver Enable Pins
- Conforms to TIA/EIA-899 M-LVDS Standard
- Controlled Transition Times Minimize Reflections
- 8 kV ESD on M-LVDS I/O Pins Protects Adjoining Components
- Flow-Through Pinout Simplifies PCB Layout
- Industrial Operating Temperature Range (-40°C to +85°C)
- Available in a Space Saving SOIC-16 Package

APPLICATIONS

- Multidrop / Multipoint Clock and Data
 Distribution
- High-Speed, Low Power, Short-Reach Alternative to TIA/EIA-485/422
- Clock Distribution in AdvancedTCA (ATCA) and MicroTCA (µTCA) Backplanes


DESCRIPTION

The DS91M124 is a 1:4 M-LVDS repeater for driving and distributing clock or data signals to up to four multipoint networks.

M-LVDS (Multipoint LVDS) is a new family of bus interface devices based on LVDS technology specifically designed for multipoint and multidrop cable and backplane applications. It differs from standard LVDS in providing increased drive current to handle double terminations that are required in multipoint applications. Controlled transition times minimize reflections that are common in multipoint configurations due to unterminated stubs.

A single DS91M124 channel is a 1:4 repeater that accepts LVTTL/LVCMOS signals at the driver inputs and converts them to differential M-LVDS signal levels. It features independent driver enable pins for each driver output.

The DS91M124 has a flow-through pinout for easy PCB layout. It provides a new alternative for high speed multipoint interface applications. It is packaged in a space saving SOIC-16 package.

Typical Application

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

www.ti.com

Pin Diagram

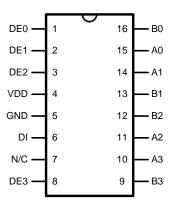
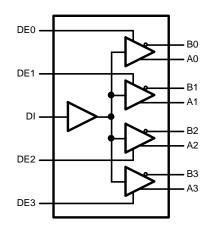



Figure 1. SOIC Package See Package Number D0016A

Logic Diagram

Pin Descriptions

Number	Name	I/O, Type	Description
1, 2, 3, 8	DE	I, LVCMOS	Driver enable pin: When a DE pin is low, the corresponding driver output is disabled. When a DE pin is high, the corresponding driver output is enabled. There is a 300 k Ω pulldown resistor on each DE pin.
6	DI	I, LVCMOS	Driver input pin.
5	GND	Power	Ground pin.
10, 11, 14, 15	А	O, M-LVDS	Non-inverting driver output pins.
9, 12, 13, 16	В	O, M-LVDS	Inverting driver output pins.
4	V _{DD}	Power	Power supply pin, +3.3V ± 0.3V
7	N/C	N/A	NO CONNECT pin.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

www.ti.com

Absolute Maximum Ratings (1)(2)

-0.3V to +4V
-0.3V to (V _{DD} + 0.3V)
-1.9V to +5.5V
Continuous
+140°C
−65°C to +150°C
+260°C
2.21W
19.2 mW/°C above +25°C
+52°C/W
+19°C/W
≥8 kV
≥250V
≥1250V

"Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of (1) device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions.

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and (2) specifications.

Human Body Model, applicable std. JESD22-A114C (3)

Machine Model, applicable std. JESD22-A115-A

(4) (5) Field Induced Charge Device Model, applicable std. JESD22-C101-C

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage, V _{DD}	3.0	3.3	3.6	V
Voltage at Any Bus Terminal (Separate or Common-Mode)	-1.4		+3.8	V
LVTTL Input Voltage High V _{IH}	2.0		V _{DD}	V
LVTTL Input Voltage Low VIL	0		0.8	V
Operating Free Air				
Temperature T _A	-40	+25	+85	°C

STRUMENTS

XAS

www.ti.com

DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified. (1)(2)(3)(4)

	Parameter	Test Conditions	Min	Тур	Max	Units
LVCMOS [DC Specifications					
VIH	High-Level Input Voltage		2.0		V _{DD}	V
VIL	Low-Level Input Voltage		GND		0.8	V
I _{IH}	High-Level Input Current	V _{IH} = 3.6V	-15	±1	15	μA
IIL	Low-Level Input Current	$V_{IL} = 0V$	-15	±1	15	μA
V _{CL}	Input Clamp Voltage	I _{IN} = -18 mA	-1.5			V
M-LVDS D	C Specifications					<u>,</u>
V _{AB}	Differential Output Voltage Magnitude	$R_L = 50\Omega, C_L = 5 pF$	480		650	mV
ΔV_{AB}	Change in Differential Output Voltage Magnitude Between Logic States	Figure 2 Figure 4	-50		50	mV
V _{OS(SS)}	Steady-State Common-Mode Output Voltage	Figure 2	0.30	1.6	2.10	V
ΔV _{OS(SS)}	Change in Steady-State Common-Mode Output Voltage Between Logic States	Figure 3 $R_L = 50\Omega$	0		50	mV
V _{A(OC)}	Maximum Steady-State Open-Circuit Output Voltage	Figure F	0		2.4	V
V _{B(OC)}	Maximum Steady-State Open-Circuit Output Voltage	Figure 5	0		2.4	V
V _{P(H)}	Voltage Overshoot, Low-to-High Level Output	$R_L = 50\Omega, C_L = 5 \text{ pF}$ $C_D = 0.5 \text{ pF}$			1.2V _{SS}	V
V _{P(L)}	Voltage Overshoot, High-to-Low Level Output	Figure 7 Figure 8	-0.2V _{SS}			V
I _{OS}	Output Short-Circuit Current ⁽⁶⁾	Figure 6	-43		43	mA
		V _A = 3.8V, V _B = 1.2V	0		32	μA
I _A	Driver High-Impedance Output Current	$V_A = 0V \text{ or } 2.4V, V_B = 1.2V$	-20		20	μA
		V _A = -1.4V, V _B = 1.2V	-32		0	μA
		$V_A = 3.8V, V_B = 1.2V$	0		32	μA
I _B	Driver High-Impedance Output Current	$V_A = 0V \text{ or } 2.4V, V_B = 1.2V$	-20		20	μA
		V _A = -1.4V, V _B = 1.2V	-32		0	μA
I _{AB}	Driver High-Impedance Output Differential Curent $(I_A - I_B)$	$V_{A} = V_{B}, -1.4V \le V \le 3.8V$	-4		4	μA
I _{A(OFF)}	Driver High-Impedance Output Power-Off Current	$V_A = 3.8V, V_B = 1.2V$ $DE_n = 0V$ $0V \le V_{DD} \le 1.5V$	0		32	μA
		$V_A = 0V \text{ or } 2.4V, V_B = 1.2V$ $DE_n = 0V$ $0V \le V_{DD} \le 1.5V$	-20		20	μA
		$V_A = -1.4V, V_B = 1.2V$ $DE_n = 0V$ $0V \le V_{DD} \le 1.5V$	-32		0	μA

(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.

(2) Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except V_{OD} and Δ V_{OD}. Typical values represent most likely parametric norms for V_{DD} = +3.3V and T_A = +25°C, and at the Recommended Operation Conditions

(3) at the time of product characterization and are not ensured.

- C_L includes fixture capacitance and C_D includes probe capacitance. (4)
- (5) Specification is ensured by characterization and is not tested in production.
- (6) Output short circuit current (I_{OS}) is specified as magnitude only, minus sign indicates direction only.
- 4 Submit Documentation Feedback

www.ti.com

DC Electrical Characteristics (continued)

Over supply voltage and operating temperature ranges, unless otherwise specified. (1)(2)(3)(4)

	Parameter	Test Conditions	Min	Тур	Max	Units
I _{B(OFF)}	Driver High-Impedance Output Power-Off Current	$\begin{array}{l} V_{A}=3.8V, V_{B}=1.2V \\ DE_{n}=0V \\ 0V\leqV_{DD}\leq1.5V \end{array}$	0		32	μA
		$ \begin{array}{l} V_A = 0V \text{ or } 2.4V, \ V_B = 1.2V \\ DE_n = 0V \\ 0V \leq V_{DD} \leq 1.5V \end{array} $	-20		20	μA
		$ \begin{array}{l} V_A = -1.4V, \ V_B = 1.2V \\ DE_n = 0V \\ 0V \leq V_{DD} \leq 1.5V \end{array} $	-32		0	μA
I _{AB(OFF)}	Driver High-Impedance Output Power-Off Current $(I_{A(OFF)} - I_{B(OFF)})$	$V_A = V_B, -1.4V \le V \le 3.8V$ $DE_n = 0V$ $0V \le V_{DD} \le 1.5V$	-4		4	μA
C _A	Driver Output Capacitance			7.8		pF
C _B	Driver Output Capacitance			7.8		pF
C _{AB}	Driver Output Differential Capacitance	$V_{DD} = 0V$		3		pF
C _{A/B}	Driver Output Capacitance Balance (C _A /C _B)			1		
I _{CCL}	Loaded Supply Current Enabled	$ \begin{array}{l} R_{L} = 50\Omega \; (All \; Outputs) \\ DI = V_{DD} \; or \; \mathsf{GND} \\ DE_{n} = V_{DD} \; or \; \mathsf{GND} \; (All \; Outputs) \\ \end{array} $		65	75	mA
I _{CCZ}	No Load Supply Current Disabled	$DI = V_{DD}$ or GND, $DE_n = GND$ (All Outputs)		19	24	mA

Switching Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified. (1)(2)(3)

	Parameter	Test Conditions	Min	Тур	Max	Units
t _{PHL}	Differential Propagation Delay High to Low		1.8	3.9	6.5	ns
t _{PLH}	Differential Propagation Delay Low to High		1.8	3.9	6.5	ns
t _{SKD1}	Differential Pulse Skew t _{PHL} - t _{PLH} ^{(4) (5)}	D 500	0	25	100	ps
t _{SKD2}	Channel-to-Channel Skew ^{(4) (6)}	$R_{L} = 50\Omega$ $C_{L} = 5 \text{ pF},$	0	70	250	ps
t _{SKD3}	Differential Part-to-Part Skew $^{(4)}$ (7) (Constant T _A and VDD)	C _D = 0.5 pF Figure 7	0	1.5	2	ns
t _{SKD4}	Differential Part-to-Part Skew (4) (8)	Figure 8	0		4.7	ns
t _{TLH}	Rise Time ⁽⁴⁾		1.1	2.0	3.0	ns
t _{THL}	Fall Time ⁽⁴⁾		1.1	2.0	3.0	ns
t _{PHZ}	Disable Time High to Z	$R_{L} = 50\Omega$		6	11	ns
t _{PLZ}	Disable Time Low to Z	$C_L = 5 \text{ pF},$		6	11	ns
t _{PZH}	Enable Time Z to High	C _D = 0.5 pF Figure 9		6	11	ns
t _{PZL}	Enable Time Z to Low	Figure 10		6	11	ns
f _{MAX}	Maximum Operating Frequency ⁽⁴⁾		125			MHz

(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.

(2) Typical values represent most likely parametric norms for V_{DD} = +3.3V and T_A = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not ensured.

(3) C_L includes fixture capacitance and C_D includes probe capacitance.

(4) Specification is ensured by characterization and is not tested in production.

(5) t_{SKD1}, |t_{PLHD} - t_{PHLD}], Pulse Skew, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.

(6) t_{SKD2} , Channel-to-Channel Skew, is the difference in propagation delay (t_{PLHD} or t_{PHLD}) among all output channels.

(7) t_{SKD3} , Part-to-Part Skew, is defined as the difference between the minimum and maximum differential propagation delays. This specification applies to devices at the same V_{DD} and within 5°C of each other within the operating temperature range.

(8) t_{SKD4}, Part-to-Part Skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices over recommended operating temperature and voltage ranges, and across process distribution. t_{SKD4} is defined as |Max - Min| differential propagation delay.

Copyright © 2008–2013, Texas Instruments Incorporated

www.ti.com

Test Circuits and Waveforms

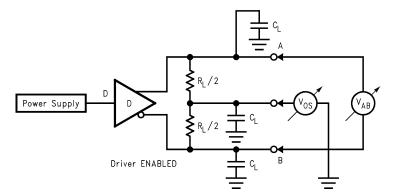
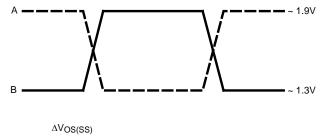



Figure 2. Differential Driver Test Circuit

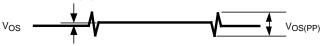


Figure 3. Differential Driver Waveforms

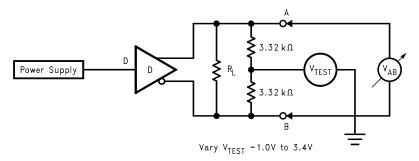
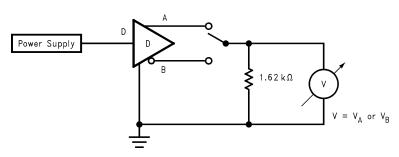



Figure 4. Differential Driver Full Load Test Circuit

www.ti.com

SNLS287E - AUGUST 2008 - REVISED APRIL 2013

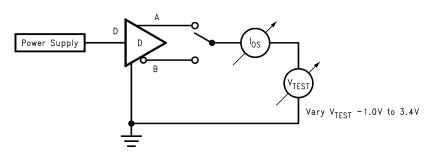


Figure 6. Differential Driver Short-Circuit Test Circuit

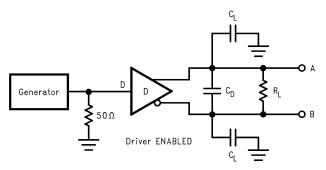


Figure 7. Driver Propagation Delay and Transition Time Test Circuit

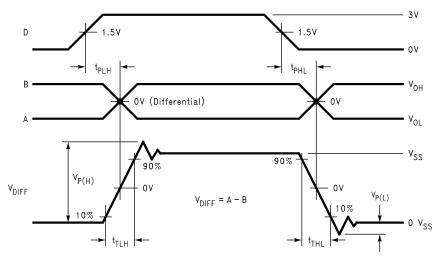
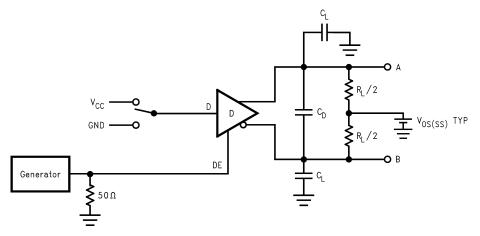
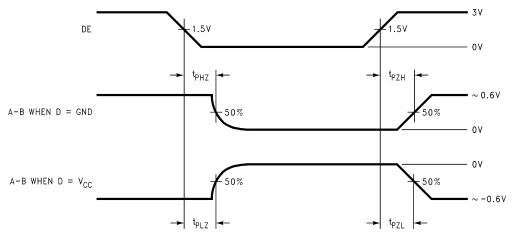
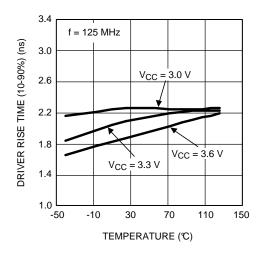



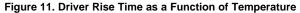
Figure 8. Driver Propagation Delays and Transition Time Waveforms

TEXAS INSTRUMENTS

SNLS287E - AUGUST 2008 - REVISED APRIL 2013

www.ti.com


Figure 10. Driver TRI-STATE Delay Waveforms

www.ti.com

Typical Performance Characteristics

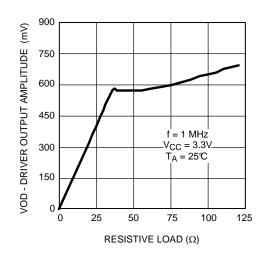


Figure 13. Driver Output Signal Amplitude as a Function of Resistive Load

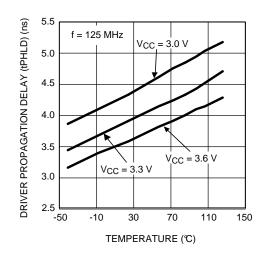


Figure 15. Driver Propagation Delay (tPHLD) as a Function of Temperature

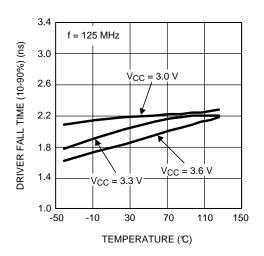


Figure 12. Driver Fall Time as a Function of Temperature

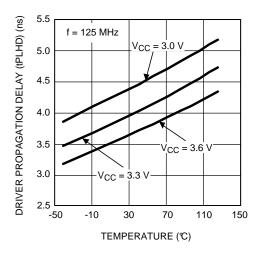


Figure 14. Driver Propagation Delay (tPLHD) as a Function of Temperature

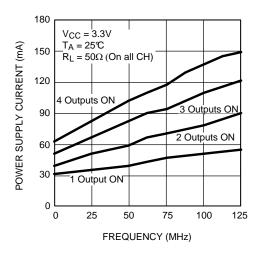


Figure 16. Driver Power Supply Current as a Function of Frequency

REVISION HISTORY

Cł	nanges from Revision D (April 2013) to Revision E	Page
•	Changed layout of National Data Sheet to TI format	9

Copyright © 2008–2013, Texas Instruments Incorporated

www.ti.com

16-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
DS91M124TMA/NOPB	ACTIVE	SOIC	D	16	48	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	DS91M124 TMA	Samples
DS91M124TMAX/NOPB	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	DS91M124 TMA	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

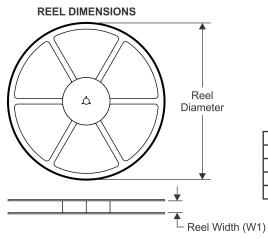
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

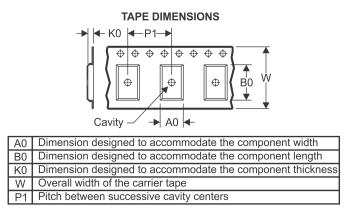
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

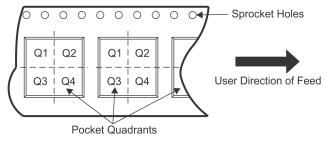
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

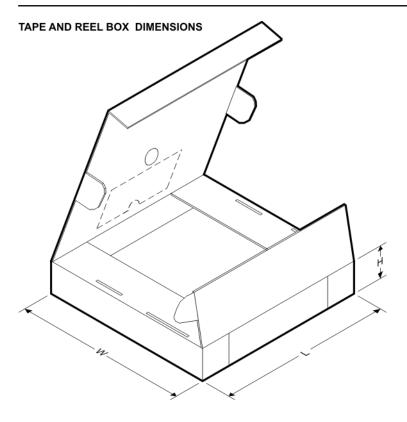

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

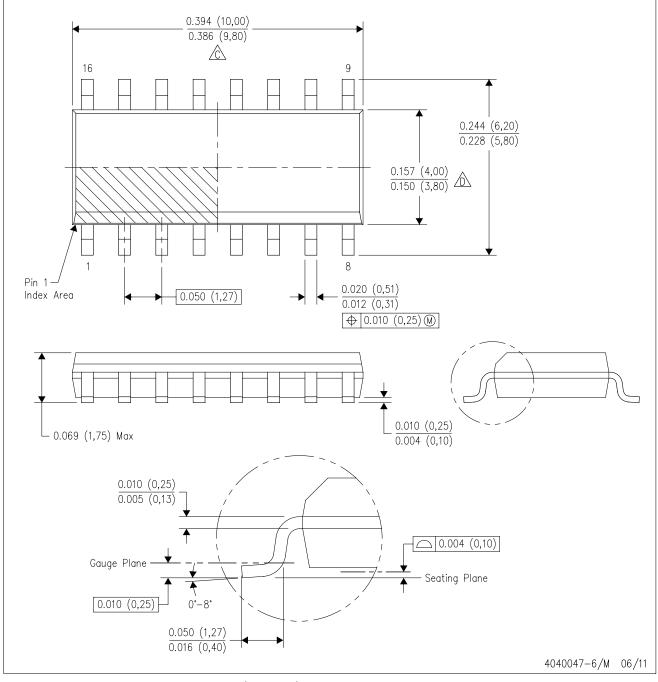

Device		Package Drawing	Pins		Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS91M124TMAX/NOPB	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Apr-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS91M124TMAX/NOPB	SOIC	D	16	2500	367.0	367.0	35.0

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated