

DS90UR910Q

DS90UR910Q 10 - 75 MHz 24-bit Color FPD-Link II to CSI-2 Converter

Check for Samples: DS90UR910Q

FEATURES

- 10 75 MHz PCLK Support (280 Mbps 2.10 Gbps FPD-Link II Linerate)
- Compatible to DC Balanced, AC Ccoupled for FPD-Link II Serial Bit Stream
- Capable to Recover Data up to 10 Meters STP Cable
- MIPI D-PHY Modules Conform to v1.00.00
- **Compatible with MIPI CSI-2 Version 1.01**
- Supports Data Rate up to 900Mbps per Data Lane, with Two Lanes
- Video Stream Packet Formats: RGB888
- **Continuous and Non-Continuous Clocking** . Mode
- Ultra Low Power, Escape, High Speed, and **Control Modes Support**
- Integrated Input Terminations and Adjustable **Receive Equalization**
- Fast Random Lock; No Reference Clock . Required
- CCI/I2C Compatible Control Bus .
- @Speed BIST and Reporting Pin
- Single +1.8V Power Supply
- 1.8V or 3.3V Compatible LVCMOS I/O Interface
- Automotive Grade Product: AEC-Q100 Grade 2 Qualified

- 8 kV ISO 10605 ESD Rating
- Lead-less WQFN-40 Package (6mm x 6mm)

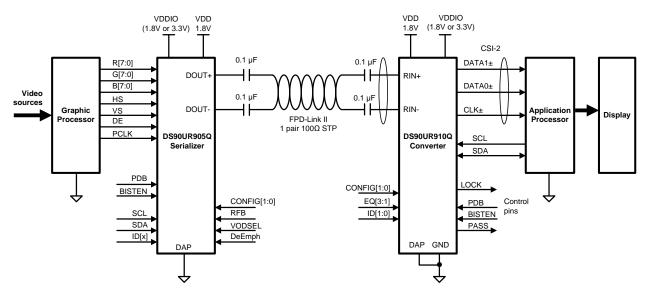
DESCRIPTION

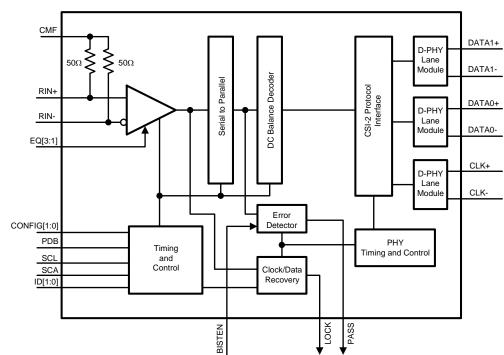
The DS90UR910Q is an interface bridge chip that recovers data from the FPD-Link II serial bit stream and converts into a Camera Serial Interface (CSI-2) format compatible with Mobile Industry Processor Interface (MIPI) specifications. It recovers the 24- or 18-bit RGB data and 3 video sync-signals from the serial bit stream compatible to FPD-Link II serializers. The recovered data is packetized and serialized over two data lanes strobed by a half-rate serial clock compliant with the MIPI DPHY / CSI-2 specifications, each running up to 900 Mbps. The FPD-Link II receiver supports pixel clocks of up to 75 MHz. The CSI-2 output serial bus greatly reduces the interconnect and signal count to a graphic processing unit (GPU) and eases system designs for video streams from multiple automotive driver assist cameras.

The DS90UR910Q is available in a 40-lead WQFN package. Electrical performance is gualified for automotive AEC-Q100 grade 2 temperature range 40°C to +105°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of ÆÀ Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. TRI-STATE is a registered trademark of National Semiconductor Corporation.

All other trademarks are the property of their respective owners.




SNLS414C-JUNE 2012-REVISED MAY 2013

www.ti.com

APPLICATIONS DIAGRAM

BLOCK DIAGRAMS

PRODUCT PREVIEW

SNLS414C-JUNE 2012-REVISED MAY 2013

PIN DIAGRAM

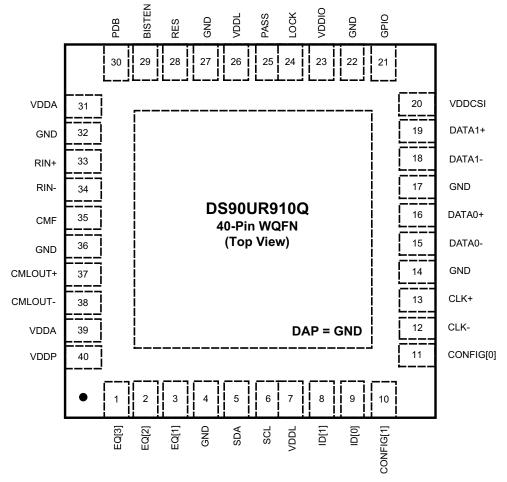


Figure 1. Top View

PIN DESCRIPTIONS⁽¹⁾

Pin Name	Pin #	I/O, Type	Description					
FPD-Link II Ser	FPD-Link II Serial Interface							
RIN+ RIN-	33 34	I, CML	Inverting and non-inverting differential inputs. The inputs must be AC Coupled with a 100 nF capacitor.					
CMF	35	I, Analog	Common mode filter pin for the differential inputs. CMP is the virtual ground of the differential input stage. A bypass capacitor is connected from CMP to ground to increase the receiver's common mode noise immunity. A 4.7 µF ceramic capacitor is recommended.					
CMLOUT+ CMLOUT-	37 38	O, CML	Inverting and non-inverting differential outputs. Single 100Ω (1%) termination resistor must be placed across the CMLOUT± pins. Optional loop-through output to monitor post equalizer and requires use of the Serial Control Bus to enable.					
MIPI Interface	•	•						
DATA1+ DATA1-	19 18	O, DPHY O, DPHY	Inverting and non-inverting data output of DPHY Lane 1					
DATA0+ DATA0-	16 15	O, DPHY O, DPHY	Inverting and non-inverting data output of DPHY Lane 0					
CLK+ CLK-	13 12	O, DPHY O, DPHY	Inverting and non-inverting half-rate DPHY clock lane					

(1) 1 = HIGH, 0 = LOW

ISTRUMENTS

ÈXAS

PIN DESCRIPTIONS⁽¹⁾ (continued)

Pin Name	Pin #	I/O, Type	Description
Control and Co	onfiguration		•
PDB	30	l, LVCMOS w/ pull-down	Power Down Mode Input PDB = 1, Device is enabled (normal operation) PDB = 0, Device is in power-down When the device is in the power-down, outputs are TRI-STATE, control registers are RESET.
CONFIG[1:0]	10, 11	I, LVCMOS w/ pull-down	Operating Mode Select CONFIG[1:0] selects compatibility to FPD-Link II serializers. See Table 1.
EQ[3:1]	1, 2, 3	I, LVCMOS w/ pull-down	Receive equalization control EQ[3:1] provides 8 combinations of the receive equalization gain settings. See Table 2. EQ[3:1] optimizes the input equalizer's ability to reduce inter-symbol interference from the loss characteristics of different cable lengths.
BISTEN	29	I, LVCMOS w/ pull-down	BIST Enable Input BISTEN = 1, BIST is enabled BISTEN = 0, BIST is disabled
LOCK	24	O, LVCMOS	LOCK Status Output LOCK = 1, PLL acquired lock to the reference clock input; DPHY outputs are active LOCK = 0, PLL is unlocked
PASS	25	O, LVCMOS	Normal mode status output pin (BISTEN = 0) PASS = 1: No fault detected on input display timing PASS = 0: Indicates an error condition or corruption in display timing. Fault condition occurs if: 1) DE length value mismatch measured once in succession 2) VSync length value mismatch measured twice in succession BIST mode status output pin (BISTEN = 1) PASS = 1: No error detected
CCI / I2C Seria	Control Ruc		PASS = 0: Error detected
	Control Bus	I, LVCMOS,	Serial Control Bus Clock Input
SCL	6	Open Drain	SCL requires an external pull-up resistor to V _{DDIO} .
SDA	5	I/O, LVCMOS Open Drain	Serial Control Bus Data Input / Output SDA requires an external pull-up resistor to V _{DDIO} .
ID[1:0]	8, 9	I, LVCMOS w/ pull-down	Serial Control Bus Device ID Address Select See Table 5.
Reserved Pins			
GPIO	21	I/O	General Purpose I/O Note: Pin must be left floating during initial power-up.
RES	28	I, LVCMOS w/ pull-down	Reserved pin. Must tie Low.
Power and Gro	ound	n	
VDDL	7	Power	Power to logic circuitry, 1.8V ±5%
VDDA	39	Power	Power to analog circuitry, 1.8V ±5%
VDDP	40	Power	Power to PLL, 1.8V ±5%
VDDCSI	20	Power	Power to DPHY CSI-2 drivers, 1.8V ±5%
VDDIO	23	Power	Power to LVCMOS I/O circuitry, 1.8V ±5% OR 3.3V ±10% (V _{DDIO})
GND	4, 14, 17, 22, 27, 32, 36	Ground	Ground return.
GND	DAP	Ground	DAP is the metal contact at the bottom side, located at the center of the WQFN package. It should be connected to the GND plane with multiple via to lower the ground impedance and improve the thermal performance of the package. Connected to the ground plane (GND) with at least 9 vias.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

SNLS414C-JUNE 2012-REVISED MAY 2013

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾

Supply Voltage – V _{DDA} , V _{DDP} , V _{DDL} , V _{DDCSI} (1.8V)	-0.3V to +2.5V
Supply Voltage – V _{DDIO} (1.8V I/O)	-0.3V to +2.5V
Supply Voltage – V _{DDIO} (3.3V I/O)	-0.3V to +4.0V
LVCMOS I/O Voltage	-0.3V to +(V _{DDIO} + 0.3V)
Receiver Input Voltage	-0.3V to (V _{DDA} + 0.3V)
CSI-2 Output Voltage	-0.3V to (V _{DDCSI} + 0.3V)
Junction Temperature	+150°C
Storage Temperature	−65°C to +150°C
40L WQFN Package	
Maximum Power Dissipation Capacity at 25°C	
Derate above 25°C	1/θ _{JA} mW / °C
θ_{JA} (based on 9 thermal vias)	27.4 °C/W
θ_{JC} (based on 9 thermal vias)	3.9 °C/W
ESD Rating (HBM)	≥±8 kV
ESD Rating (CDM)	≥±1 kV
ESD Rating (MM)	≥±250 V
ESD Rating (ISO10605), $R_D = 2k\Omega$, $C_S = 150pF$ or $R_D = 2k\Omega$, $C_S = 330pF$ or $R_D = 330\Omega$, $C_S = 330pF$	150pF or R_D = 330Ω, C_S = 330pF
Air Discharge (R _{IN+} , R _{IN-})	≥±30 kV
Contact Discharge (R _{IN+} , R _{IN} -)	≥±10 kV
ESD Rating (IEC 61000-4-2), $R_{D} = 330\Omega$, $C_{S} = 150pF$	
Air Discharge (R _{IN+} , R _{IN-})	≥±30 kV
Contact Discharge (R _{IN+} , R _{IN} -)	≥±10 kV
For soldering specifications: see product folder at www.ti.com and http://www.ti.com/lit/an/snoa	549c/snoa549c.pdf

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

RECOMMENDED OPERATING CONDITIONS

	Min	Nom	Max	Units
Supply Voltage, V _{DDA} , V _{DDP} , V _{DDL} , V _{DDCSI}	1.71	1.8	1.89	
LVCMOS Supply Voltage V _{DDIO} (1.8V I/O)	1.71	1.8	1.89	V
LVCMOS Supply Voltage V _{DDIO} (3.3V I/O)	3.0	3.3	3.6	
Operating Free Air Temperature (T _A)	-40	+25	+105	°C
PCLK Clock Frequency	10		75	MHz
Supply Noise				
V _{DDn} (1.8V)			25	
V _{DDIO} (1.8V I/O)			25	mV _{P-P}
V _{DDIO} (3.3V I/O)			50	

ISTRUMENTS

EXAS

DC ELECTRICAL CHARACTERISTICS⁽¹⁾⁽²⁾⁽³⁾

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	;	Min	Тур	Max	Units
3.3V I/O LVC	MOS DC SPECIFICATIONS - VD	DIO = 3.0 to 3.6V (BISTEN, LOCK,	PASS, PDB, EQ[3:1], ID[1:0],	CONFIG[1:0], GPIC))
V _{IH}	High Level Input Voltage	V _{IN} = 3.0V to 3.6V		2.2		V _{DDIO}	V
V _{IL}	Low Level Input Voltage	V _{IN} = 3.0V to 3.6V	V _{IN} = 3.0V to 3.6V			0.8	V
I _{IN}	Input Current	$V_{\rm IN} = 0V \text{ or } V_{\rm DDIO}$		-15		+15	μA
V _{OH}	High Level Output Voltage	$I_{OH} = -2 \text{ mA}$		2.4		V _{DDIO}	V
V _{OL}	Low Level Output Voltage	I _{OL} = +2 mA		GND		0.4	V
I _{OZ}	TRI-STATE Output Current	PDB = 0V		-15		+15	uA
1.8V I/O LVC	MOS DC SPECIFICATIONS - VD	DIO = 1.71 to 1.89V (BISTEN, LOC	K, PASS, PDB, EQ[3	3:1], ID[1:0], CONFI	G[1:0], GI	PIO)
V _{IH}	High Level Input Voltage	V _{IN} = 1.71V to 1.89V		0.65* V _{DDIO}		V _{DDIO}	V
V _{IL}	Low Level Input Voltage	V _{IN} = 1.71V to 1.89V		GND		0.35* V _{DDIO}	V
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{DDIO}$		-15		+15	μA
V _{OH}	High Level Output Voltage	I _{OH} = −2 mA		V _{DDIO} -0.45		V _{DDIO}	V
V _{OL}	Low Level Output Voltage	I _{OL} = +2 mA		GND		0.45	V
I _{OZ}	TRI-STATE [®] Output Current	PDB = 0V		-15		+15	μA
SUPPLY CU	RRENT						
I _{DD1}	Supply current	Supply current drawn from 1.8V rail (V_{DDL} , V_{DDP} , V_{DDA}) Checker Board Pattern	V _{DDL} , V _{DDP} , V _{DDA} = 1.89V f = 75 MHz (900 Mbps)		88	95	mA
			V _{DDL} , V _{DDP} , V _{DDA} = 1.89V f = 10 MHz (120 Mbps)		38		mA
I _{DDTX1}	_	Supply current drawn at V _{DDCSI} Checker Board Pattern	V _{DDCSI} = 1.89V f = 75 MHz (900 Mbps)		50	65	mA
			V _{DDCSI} = 1.89V f = 10 MHz (120 Mbps)		22		mA
I _{DDIO1}		Supply current drawn at V _{DDIO} Checker Board Pattern	V _{DDIO} = 1.89V f = 75 MHz (900 Mbps)			10	mA
			V _{DDIO} = 3.6V f = 75 MHz (900 Mbps)			15	mA

 Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground except VOD, ΔVOD, VTH and VTL which are differential voltages.

(2) Typical values represent most likely parametric norms at V_{DD} = 3.3V, Ta = +25 degC, and at the Recommended Operation Conditions at the time of product characterization and are not ensured.

(3) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.

SNLS414C -JUNE 2012-REVISED MAY 2013

DC ELECTRICAL CHARACTERISTICS⁽¹⁾⁽²⁾⁽³⁾ (continued)

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
I _{DDZ}	Supply Current at Power down mode	Supply current drawn from 1.8V rail (V_{DDL} , V_{DDP} , V_{DDA}) PDB = 0V (All other LVCMOS Inputs Low)	V _{DDL} , V _{DDP} , V _{DDA} = 1.89V			5	mA
I _{DDTXZ}		Supply current drawn at V _{DDCSI} PDB = 0V (All other LVCMOS Inputs Low)	V _{DDCSI} = 1.89V			5	mA
I _{DDIOZ}		Supply current drawn at V_{DDIO} PDB = 0V	V _{DDIO} = 1.89V			3	mA
		(All other LVCMOS Inputs Low)	$V_{DDIO} = 3.6V$			3	mA
I _{DDUPLS}	Ultra Low Power State Current	Supply current drawn from 1.8V at $(V_{DDL}, V_{DDP}, V_{DDA}, V_{DDCSI})$ and V_{DDIO} PLL off, no change in all input signals Register: 0x19h = 0x03h 0x01h = 0x02h	V _{DD} = 1.89V V _{DDIO} = 3.6V			20	mA
FPD-LINK II F	RECEIVER DC SPECIFICATIONS (F	RIN±)					
V _{TH}	Differential Input Threshold High Voltage					+50	mV
V _{TL}	Differential Input Threshold Low Voltage	V _{CM} = +1.2V (Internal V _{BIAS})		-50			mV
V _{CM}	Common Mode Voltage, Internal V_{BIAS}				1.2		V
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{DD}$		-15		+15	μA
R _T	Internal Termination Resistor	Differential across RIN+ and RI	IN-	80	100	120	Ω
CMLOUT± DF	RIVER OUTPUT DC SPECIFICATIO	NS (CMLOUT±)					
V _{OD}	Differential Output Voltage ⁽⁴⁾	$R_L = 100\Omega$			500		mV
V _{OS}	Offset Voltage Single-ended	R _L = 100Ω			1.3		V
R _T	Internal Termination Resistor	Differential across CMLOUT+ a	and CMLOUT-	80	100	120	Ω
HSTX DRIVE	R DC SPECIFICATIONS (DATA0±, I	DATA1±, CLK±) Section 8.1.1 of	MIPI D-PHY Specific	cation	I	T.	
V _{CMTX}	HS transmit static common-mode voltage			150	200	250	mV
ΔV _{CMTX(1,0)}	VCMTX mismatch when output is 1 or 0 state					5	mV
V _{OD}	HS transmit differential voltage			140	200	270	mV
ΔV _{OD}	VOD mismatch when output is 1 or 0 state					10	mV
V _{OHHS}	HS output high voltage					360	mV
Z _{OS}	Single ended output impedance			40	50	62.5	Ω
ΔZ _{OS}	Mismatch in single ended output impedance					10	%
LPTX DRIVE	R DC SPECIFICATIONS (DATA0±, D	DATA1±, CLK±) Section 8.1.2 of	MIPI D-PHY Specific	cation			
V _{OH}	Output high level	See ⁽⁵⁾		1.1	1.2	1.3	V
V _{OL}	Output low level			-50		50	mV
Z _{OLP}	Output impedance			110			Ω

Voltage difference compared to the DC average common-mode potential.

(4) (5) Specification is ensured by characterization.

ISTRUMENTS

EXAS

AC SWITCHING CHARACTERISTICS

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Cor	ditions	Min	Тур	Max	Units
FPD-LINK II	RECEIVER (RIN±)	·					
t _{IJT}	Input Jitter Tolerance, Figure 2	EQ = OFF,	jitter freq < 2MHz		0.9		UI ⁽¹⁾
		PCLK = 65MHz	jitter freq > 6MHz		0.5		UI
t _{DDLT}	Deserializer Lock Time, Figure 3	PCLK = 75 MHz			10		ms
HSTX DRIVE	R AC SPECIFICATIONS (DATA0±, DA	TA1±, CLK±) Secti	on 8.1.1 of MIPI D-PH	Y Specifica	tion		
HSTX _{DBR}	Data bit rate	DATA0± DATA1±	PCLK = 10- 75MHz ⁽²⁾	120	PCLK*12	900	Mbps
f _{CLK}	DDR Clock frequency	CLK±		60	PCLK*6	450	MHz
$\Delta V_{CMTX(HF)}$	Common mode voltage variations HF	Common-level va MHz ⁽²⁾	ariations above 450			15	mV _{RM}
$\Delta V_{CMTX(LF)}$	Common mode voltage variations LF	Common-level va 50–450 MHz ⁽²⁾	riations between			25	mV _{PEA}
t _{RHS}	Rise Time HS	20% to 80% rise	time ⁽³⁾			0.3	UIINS
				150			ps
t _{FHS}	Fall Time HS	20% to 80% rise	time ⁽³⁾			0.3	UI _{INS} -
				150			ps
SDD _{TX}	TX differential return loss	See Figure 33 of	f _{LPMAX}			-18	dB
		MIPI D-PHY Specification ⁽²⁾	f _H			-12	dB
		opeoincation	f _{MAX}			-6	dB
SCC _{TX}	TX common mode return loss	Section 7.7.2 of MIPI D-PHY Specification ⁽²⁾	$f_{\mbox{LPMAX}}$ to $f_{\mbox{MAX}}$			-6	dB
	R AC SPECIFICATIONS (DATA0±, DAT of MIPI D-PHY Specification	TA1±, CLK±) ⁽⁴⁾					
t _{RLP}	Rise Time	LP 15% to 85% r Cload = 70pF lun	ise time nped capacitance			25	ns
t _{FLP}	Fall Time	LP 15% to 85% f Cload = 70pF lun	all time nped capacitance			25	ns
t _{REOT}	Post-EoT Rise and Fall Time	30%-85% rise tim	ne and fall time ⁽²⁾			35	ns
t _{LP-PULSE-TX}	Pulse width of the LP exclusive-OR clock	First LP exclusive after Stop state o Stop state ⁽²⁾	e-OR clock pulse r last pulse before	40			ns
		All other pulses ⁽²)	20			ns
t _{LP-PER-TX}	Period of the LP exclusive-OR clock	See ⁽²⁾		90			ns

(1) UI is equivalent to one serialized data bit width (1UI = 1 / 28*PCLK). The UI scales with PCLK frequency.

- (2) Specification is ensured by design and is not tested in production.
- (3) Specification is ensured by characterization.
- (4) CLOAD includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be <10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2ns delay.</p>

SNLS414C-JUNE 2012-REVISED MAY 2013

www.ti.com

AC SWITCHING CHARACTERISTICS (continued)

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
σV/σtSR	Slew rate	$Cload = 0pF^{(3)(4)(5)}$			500	mV/ns
		$Cload = 5pF^{(3)(4)(5)}$			300	mV/ns
		$Cload = 20pF^{(3)(4)(5)}$			250	mV/ns
		$Cload = 70pF^{(3)(4)(5)}$			150	mV/ns
		Cload = 0 to 70pF (Falling Edge Only) ⁽³⁾⁽⁴⁾⁽⁵⁾⁽⁶⁾	30			mV/ns
		Cload = 0 to 70pF (Rising Edge Only) ^{(3) (4) (5)}	30			mV/ns
		Cload = 0 to 70pF (Rising Edge Only) $^{(3)(4)(7)(8)}$	30 - 0.075			mV/ns
			(V _{O,INST} – 700)			
C _{LOAD}	Load capacitance	See ⁽⁴⁾	0		70	pF
Data-Clock Ti	ming Specifications (DATA0±, DATA	1±, CLK±) Section 9.2.1 of MIPI D-PHY	Specification			-
UI _{INST}	Instantaneous Unit Interval Figure 4	PCLK = 10 - 75 MHz ⁽⁹⁾		1/ (PCLK*12)		ns
t _{SKEW(TX)}	Data to Clock Skew Figure 4	Skew between Clock and data from ideal center ⁽²⁾	0.5-0.15	0.5	0.5+0.15	UI _{INST}
CSI-2 Timing	Specifications (DATA0±, DATA1±, CL	K±) ⁽²⁾ (Figure 5, Figure 6) Section 5.9 of	of MIPI D-PH	Specification	n	
t _{CLK-POST}	HS exit		60 + 52*Ul _{INST}			ns
t _{CLK-PRE}	Time HS clock shall be driver prior to any associated Data Lane beginning the transition from LP to HS mode		8			UI _{INST}
t _{CLK-PREPARE}	Clock Lane HS Entry		38		95	ns
t _{CLK-SETTLE}	Time interval during which the HS receiver shall ignore any Clock Lane HS transitions		95		300	ns
t _{CLK-TERM-EN}	Time-out at Clock Lane Display Module to enable HS Termination				38	ns
t _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst		30			ns
t _{CLK-PREPARE} + t _{CLK-ZERO}	TCLK-PREPARE + time that the transmitter drives the HS-0 state prior to starting the Clock		300			ns
t _{D-TERM-EN} ⁽¹⁰⁾	Time for the Data Lane receiver to enable the HS line termination		35 ns + 4*Ul _{INST}			ns
t _{LPX}	Transmitted length of LP state		50			ns
t _{HS-PREPARE}	Data Lane HS Entry		40 + 4*Ul _{INST}		85 + 6*UI _{INST}	ns
t _{HS-PREPARE} + t _{HS-ZERO}	tHS-PREPARE + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence		145 + 10*Ul _{INST}			ns
t _{HS-SETTLE}	Interval HS receiver shall ignore any Data Lane HS transitions		85 + 6*Ul _{INST}		145 + 10*Ul _{INST}	ns

(5) Measured as average across any 50 mV segment of the output signal transition.

(6) When the output voltage is between 400 mV and 930 mV.

(7) Where VO,INST is the instantaneous output voltage, VDP or VDN, in millivolts.

(8) When the output voltage is between 700 mV and 930 mV.

- (9) UI_{INST} is equal to 1/(12*PCLK), where PCLK is the fundamental frequency for data transmission.
- (10) This parameter value can be lower then TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior as described in D-PHY ver 1.00.00.

Copyright © 2012–2013, Texas Instruments Incorporated

AC SWITCHING CHARACTERISTICS (continued)

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{HS-TRAIL}	Data Lane HS Exit		60 + 4*Ul _{INST}			ns
t _{eot}	Transmitted time interval from the start of tHS-TRAIL to the start of the LP-11 state following a HS burst				105 + 12*UI _{INST}	ns
t _{HS-EXIT}	Time that the transmitter drives LP- 11 following a HS burst.		100			ns
t _{WAKEUP}	Recovery Time from Ultra Low Power State (ULPS)		1			ms

RECOMMENDED TIMING FOR THE SERIAL CONTROL BUS (CCI/I2C)

Over supply and temperature ranges unless otherwise specified. (Figure 8)⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{SCL}	SCL Clock Frequency	Standard Mode	>0		100	kHz
		Fast Mode	>0		400	kHz
t _{LOW}	SCL Low Period	Standard Mode	4.7			us
		Fast Mode	1.3			us
t _{HIGH}	SCL High Period	Standard Mode	4.0			us
		Fast Mode	0.6			us
t _{HD;STA}	Hold time for a start or a	Standard Mode	4.0			us
	repeated start condition	Fast Mode	0.6			us
t _{SU;STA}	Set Up time for a start or a repeated start condition	Standard Mode	4.7			us
		Fast Mode	0.6			us
t _{HD;DAT}	Data Hold Time	Standard Mode	0		3.45	us
		Fast Mode	0		0.9	us
t _{SU;DAT}	Data Set Up Time	Standard Mode	250			ns
		Fast Mode	100			ns
t _{SU;STO}	Set Up Time for STOP	Standard Mode	4.0			us
	Condition	Fast Mode	0.6			us
t _{BUF}	Bus Free Time	Standard Mode	4.7			us
	Between STOP and START	Fast Mode	1.3			us
t _r	SCL & SDA Rise Time	Standard Mode			1000	ns
		Fast Mode			300	ns
t _f	SCL & SDA Fall Time	Standard Mode			300	ns
		Fast mode			300	ns

(1) Recommended Input Timing Requirements are input specifications and not tested in production.

10 Submit Documentation Feedback

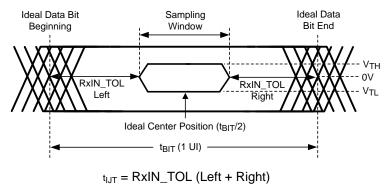
SNLS414C -JUNE 2012-REVISED MAY 2013

www.ti.com

DC AND AC SERIAL CONTROL BUS (CCI/I2C)

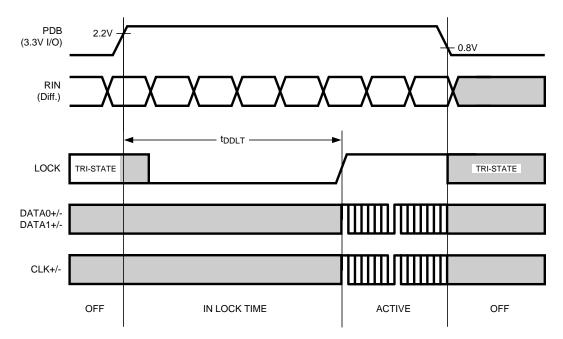
Over supply and temperature ranges unless otherwise specified. (Figure 8)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{IH}	Input High Level	SDA and SCL	0.65* V _{DDIO}		V _{DDIO}	V
V _{IL}	Input Low Level Voltage	SDA and SCL	GND		0.35* V _{DDIO}	V
V _{HY}	Input Hysteresis	Fast mode, 3.3V I/O ⁽¹⁾	0.05* V _{DDIO}			mV
		Fast mode, 1.8V I/O		0.1* V _{DDIO}		mV
V _{OL}	Output Low Level Voltage	SDA, I _{OL} = +1.5 mA	0		0.4	V
t _R	SDA RiseTime – READ	Total capacitance of one bus line, Cb \leq 400pF			300	ns
t _F	SDA Fall Time – READ	Standard mode			1000	ns
		Fast mode			300	ns
t _{SU;DAT}	Set Up Time – READ	Standard mode	250			ns
		Fast mode	100			ns
t _{HD;DAT}	Hold Up Time – READ		0			ns
t _{SP}	Input Filter	Fast mode		50		ns
C _{in}	Input Capacitance	SDA and SCL		5		pF

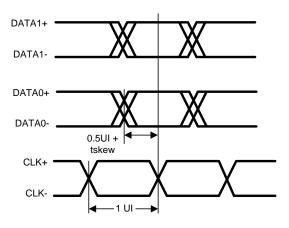

(1) Specification is ensured by characterization.

TEXAS INSTRUMENTS

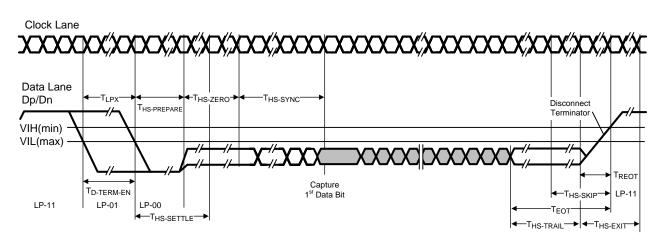
SNLS414C-JUNE 2012-REVISED MAY 2013


www.ti.com

AC TIMING DIAGRAMS AND TEST CIRCUITS



Sampling Window = 1 UI - t_{IJT}



SNLS414C-JUNE 2012-REVISED MAY 2013

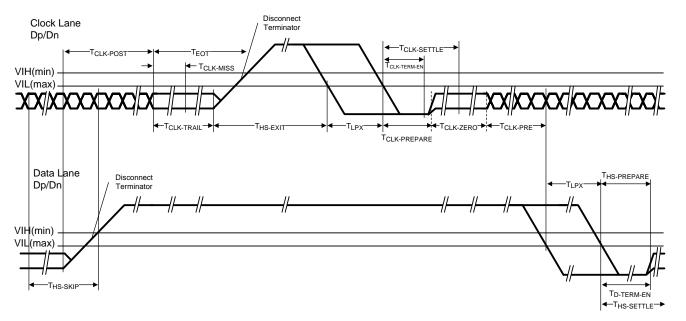


Figure 6. Switching the Clock Lane between Clock Transmission and Low-Power Mode

SNLS414C -JUNE 2012-REVISED MAY 2013

www.ti.com

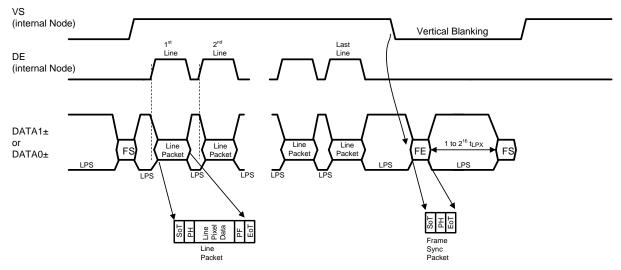


Figure 7. Long Line Packets and Short Frame Sync Packets

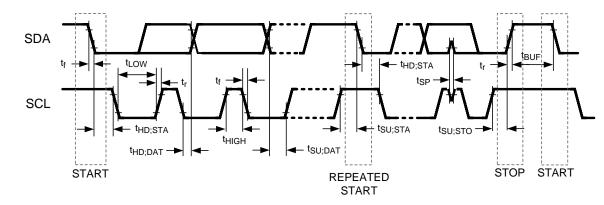


Figure 8. Serial Control Bus Timing Diagram

PRODUCT PREVIEW

www.ti.com

FUNCTIONAL DESCRIPTION

The DS90UR910Q recovers RBG data and sync signals from a FPD-Link II AC coupled serial bit stream, and converts the recovered data into packetized CSI-2 data format. The CSI-2 output serial interface greatly reduces the interconnect and signal count to a graphic processing unit and eases system designs for video streams from multiple automotive driver assist cameras.

The DS90UR910Q is based on the DS90UR906Q de-serializer core. Please refer to the DS90UR906Q datasheet for the functionality and performance of the FPD-Link II interface can be found in the DS90UR906Q datasheet.

The DS90UR910Q conforms to the MIPI CSI-2 and DPHY standards for protocol and electrical specifications. Compliant with standards:

- Conforms with MIPI Alliance Specification for D-PHY, version 1.00.00, dated May 14, 2009
- Compatible with MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 1.01, dated Nov 9, 2010

The DS90UR910Q receives 24-bit (or 18-bit) RGB data and 3 low speed control signals (VS, HS, DE) over a serial FPD-Link II transmitted through a single twisted pair. It supports a pixel clock of 10 MHz to 75 MHz, corresponding to the serial line rate of 280 Mb/s to 2100 Mb/s. The serial bit stream contains the scrambled 24-bit data, an embedded clock, encoded control signals and DC balance information which enhances signal quality and supports AC coupling.

The DS90UR910Q is compatible with FPD-Link II serializers such as DS90UR905Q, DS90UR241Q, DS90C241Q, DS90UR907Q, DS99R421Q and DS90UH/UB/925Q FPD-Link III serializers in backward compatibility mode. The serial bit stream is illustrated in Figure 9. In each pixel clock cycle, a 28-bit frame is transmitted over the FPD-Link. The frame contains C1 and C0 representing the embedded clock information. C1 is always high and C0 is always low. Payload bits b[23:0] contain the scrambled 24-bit RGB data. DCB is the DC balance bit and is used to minimize the DC offset on the signal line. DCA is used to validate the data integrity in the embedded data stream and contain the encoded control signals VS, HS and DE (DS90UR905Q, DS90UR907Q and DS90UH/UB/925Q in backward compatible mode).

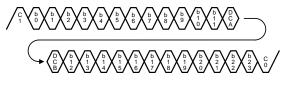


Figure 9. FPD-Link II Serial Stream

The DS90UR910Q supports compatibility to FPD-Link II serializers and FPD-Link III serializers in backward compatible mode as defined in Table 1.

CON FIG1	CON FIG0	Mode	FPD-Link II Compatibility	CSI-2 Data Format
0	0	Normal Mode, Control Signal Filter disabled	DS90UR905Q 24-bit DS90UR907Q 24-bit DS90UH/UB/925Q 24-bit	RGB888
0	1	Normal Mode, Control Signal Filter enabled	DS90UR905Q 24-bit DS90UR907Q 24-bit DS90UH/UB/925Q 24-bit	RGB888
1	0	Backwards Compatible GEN2	DS90UR241Q 18-bit DS99R421Q 18-bit	RGB888
1	1	Backwards Compatible GEN1	DS90C241Q 18-bit	RGB888

Table 1.	DS90UR910Q	Configuration	Modes
----------	------------	---------------	-------

INPUT RECEIVE EQUALIZATION

The input equalizer of the DS90UR910Q is designed to compensate the attenuation distortion results from cable of different length or wire gauge. The equalizer gain setting is controlled by the control pins EQ[3:1] or through register programming. Users can optimize the equalizer's gain setting along with the de-emphasis level of the DS90UR905Q/907Q to achieve the optimum jitter performance.

Copyright © 2012–2013, Texas Instruments Incorporated

SNLS414C -JUNE 2012-REVISED MAY 2013

www.ti.com

Note this function cannot be seen at the RIN+/- input but can be observed at the serial test port (CMLOUT+/-) enabled via the Serial Bus control registers. The equalization feature may be controlled by the external pin or by register.

	INPUTS EQ[3:1]		
EQ3	EQ2	EQ1	EQ Boost
0	0	1	~3 dB
0	1	0	~4.5 dB
0	1	1	~6 dB
1	0	0	~7.5 dB
1	0	1	~9 dB
1	1	0	~10.5 dB
1	1	1	~12 dB
0	0	0	See ⁽¹⁾

Table 2. Receiver Equalization Configuration

(1) Default Setting is EQ = Off

CSI-2 INTERFACE

The DS90UR910Q (in default mode) takes the RGB data bits R[7:0], G[7:0] and B[7:0] defined in the 24-bit serializer pinout and directly maps to the RGB888 color space in the data frame. The DS90UR910Q follows the General Frame Format as described in Figure 49 of the CSI-2 standard (repeated here in Figure 10). Upon the end of the vertical sync pulse (VS), the DS90UR910Q generates the Frame End and Frame Start synchronization packets within the vertical blanking period. The timing of the Frame Start will not reflect the timing of the VS signal.

Upon the rising edge of the DE signal, each active line is output in a long data packet with the RGB888 data format. At the end of each packet, the data lanes DATA0± and DATA1± return to the LP-11 state, while the clock lane CLK± continue outputting the high speed clock.

SNLS414C -JUNE 2012-REVISED MAY 2013

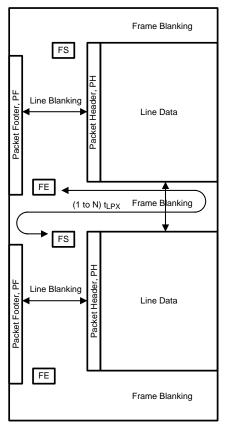


Figure 10. General Frame Format

HIGH SPEED CLOCK AND DATA

The high speed clock and data outputs are source synchronous interface. The half rate clock at CLK± is derived from the pixel clock sourced by the clock/data recovery circuit of the DS90UR910Q. The clock frequency is 6 times the Pixel clock frequency. The 24-bit recovered RGB data is serialized and output at the 2 high speed data lanes DATA0± and DATA1± in according to the CSI-2 protocol. The data rate of each lane is 12 times the Pixel clock. As an example, at a pixel clock of 75 MHz, the CLK± runs at 450 MHz, and the data lanes run at 900 Mb/s.

The half-rate clock maintains a quadrature phase relationship to the data signals and allows receiver to sample data at the rising and falling edges of the clock. Figure 4 shows the timing relationship of the clock and data lines. The DS90UR910Q supports continuous high speed clock.

High speed data are sent out at DATA0 \pm and DATA1 \pm in bursts. In between data bursts, the data lanes return to Low Power States in according to protocol defined in D-PHY standard. The rising edge of the differential clock (CLK+ – CLK-) is sent during the first payload bit of a transmission burst in the data lanes.

The DS90UR910Q recovers the data bits R[7:0], G[7:0], B[7:0], VS, HS and DE from the serial FPD-Link II bit stream at RIN±. During the vertical blanking period (VS goes low), it sends the short Frame End packet, followed by a short Frame Start packet. User can program the time between Frame End to Frame Start packets from 0 to (2¹⁶-1) in units of 8*pclk_period/3.

NON-CONTINUOUS/CONTINUOUS CLOCK

DS90UR910Q D-PHY supports Continuous clock mode and Non-Continuous clock mode. Default mode is Non-Continuous Clock mode, where the Clock Lane enters in LP mode between the transmissions of data packets. Non-continuous clock mode will only be non-continuous during the vertical blanking period for lower PCLK rates. For higher PCLK rates, the clock will be non-continuous between line and frame packets. Operating modes are configurable through CCI.

SNLS414C -JUNE 2012-REVISED MAY 2013

www.ti.com

Clock lane enters LP11 during horizontal blanking if the horizontal blanking period is longer than the overhead time to start/stop the clock lane. There is auto-detection of the length of the horizontal blank period. The threshold is 70 PCLK cycles. Register bit available to disable off the non-continuous clock mode

DATA FRAME RGB MAPPING

Table 3 shows the pixel data R[7:0], G[7:0 and B[7:0] defined in DS90UR905Q/907Q and DS90UH/UB/925Q pinout, which are recovered by the DS90UR910Q and output in RGB888 format at the CSI-2 interface.

FPD-Link II (24-bit) pin name	RGB888 Data bits
R[0]	R[0]
R[1]	R[1]
R[2]	R[2]
R[3]	R[3]
R[4]	R[4]
R[5]	R[5]
R[6]	R[6]
R[7]	R[7]
G[0]	G[0]
G[1]	G[1]
G[2]	G[2]
G[3]	G[3]
G[4]	G[4]
G[5]	G[5]
G[6]	G[6]
G[7]	G[7]
B[0]	B[0]
B[1]	B[1]
B[2]	B[2]
B[3]	B[3]
B[4]	B[4]
B[5]	B[5]
B[6]	B[6]
B[7]	B[7]
HS	
VS	
DE	

 Table 3. CSI-2 RGB888 Data Format with FPD-Link II Serializer (24-bit mode)

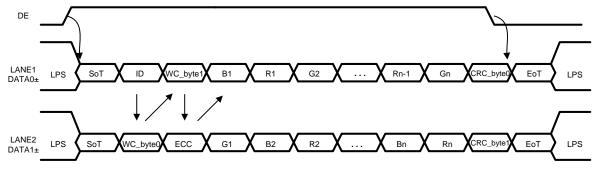


Figure 11. DATA0± and DATA1± packet format in according to CSI-2 protocol for RGB888

SNLS414C-JUNE 2012-REVISED MAY 2013

www.ti.com

FPD-Link II (18-bit) pin name	RGB Data bits	CSI-2 RGB888 Data bits
		R[0]
		R[1]
DIN[0]	R[0]	R[2]
DIN[1]	R[1]	R[3]
DIN[2]	R[2]	R[4]
DIN[3]	R[3]	R[5]
DIN[4]	R[4]	R[6]
DIN[5]	R[5]	R[7]
		G[0]
		G[1]
DIN[6]	G[0]	G[2]
DIN[7]	G[1]	G[3]
DIN[8]	G[2]	G[4]
DIN[9]	G[3]	G[5]
DIN[10]	G[4]	G[6]
DIN[11]	G[5]	G[7]
		B[0]
		B[1]
DIN[12]	B[0]	B[2]
DIN[13]	B[1]	B[3]
DIN[14]	B[2]	B[4]
DIN[15]	B[3]	B[5]
DIN[16]	B[4]	B[6]
DIN[17]	B[5]	B[7]
DIN[18]	HS	
DIN[19]	VS	
DIN[20]	DE	

Table 4. CSI-2 Data Format with FPD-Link II Serializers (18-bit mode)

SERIAL CONTROL BUS (CCI/I2C)

The DS90UR910Q can be configured by the use of the CCI (Camera Control Interface), which is a bi-directional, half-duplex, serial control bus consists of SDA and SCL. The SDA is the bi-directional data line. The SCL is the serial clock line. Both SCL and SDA are driven by open drain drivers and required external pull-up resistors to VDDIO. The signals are either driven low or pulled high.

The DS90UR910Q is a CCI slave. ID[1:0] pins select one of the four CCI slave addresses (see Table 5).

Table 5.	CCI/I2C Slave Address	
----------	-----------------------	--

ID[1]	ID[0]	7-bit slave address	8-bit slave address (0 appended WRITE)
0	0	011 1100 (0x3C'h)	0111 1000 (0x78'h)
0	1	011 1101 (0x3D'h)	0111 1010 (0x7A'h)
1	0	011 0110 (0x36'h)	0110 1100 (0x6C'h)
1	1	011 0111 (0x37'h)	0110 1110 (0x6E'h)

SNLS414C-JUNE 2012-REVISED MAY 2013

www.ti.com

The Serial Bus protocol is initiated by START or START-REPEATED, and terminated by STOP condition. A START occurs when SDA transitions low while SCL is high. A STOP occurs when SDA transitions high when SCL is high. See Figure 12.

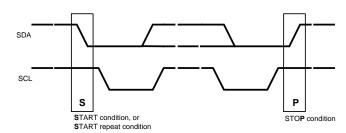


Figure 12. START and STOP Conditions

To communicate with a remote device, the host controller (master) sends the 7-bit slave address followed by a write-bit (0), and listens for a response from the slave. This response is referred to as an acknowledge bit. If the slave on the bus is addressed correctly, it acknowledges the master by driving the SDA low (ACK). If the address does not match a device's slave address, it negative acknowledges the master by letting SDA be pulled high (NACK). In a write operation from master to slave, the master sends the 8-bit index address of the register that it wants to access. After the slave ACKs, the master sends the 8-bit data byte. The slave ACKs after each data byte is successfully received and is ready to receive another byte into the next sequential index location. At the end of the data transfer, the master ends the transaction with a STOP condition.

In a read operation, the master first sends the 8-bit index address of the register that it wants to access. After receiving an ACK from the slave, it initiates a START-REPEAT condition, sends the 7-bit slave address followed by the read-bit (1). The slave ACKs and sends out the 8-bit data byte. The master acknowledges an ACK when another data byte will be sent to the next sequential index address. The master acknowledges an NACK when no more data byte will be sent, and ends the transaction with a STOP condition.

The CCI interface of the DS90UR910Q supports Standard mode (<100KHz) or Fast mode (<400KHz) with 8-bit index addressing and 8-bit data transfer. It supports the following read/write operations between the DS90UR910Q and the CCI master:

- Single read from random location
- Single read from current location
- Sequential read starting from a random location
- Sequential read starting from the current location
- Single write to a random location
- Sequential write starting from a random location

SNLS414C -JUNE 2012-REVISED MAY 2013

Single Read from random location
S ADDRESS 0 A SUB ADDRESS A S SLAVE ADDRESS 1 A DATA A P
Single Read from the current location
S SLAVE ADDRESS 1 A DATA A P
Sequential Read from a random location
S ADDRESS 0 A SUB ADDRESS A S SLAVE 1 A DATA A DATA Ā P
Sequential Read from current location
S ADDRESS 1 A DATA A DATA A DATA A DATA A
Single Write from random location
S SLAVE ADDRESS 0 A SUB ADDATA A/ P
Sequential Write
S ADDRESS 0 A SUB ADDRESS A DATA A DATA A' P
Figure 13 12C/CCI Read/Write Operations

Figure 13. I2C/CCI Read/Write Operations

TEXAS INSTRUMENTS

SNLS414C-JUNE 2012-REVISED MAY 2013

www.ti.com

ADD (hex)	Register Name	Bit(s)	R/W	Default	Field	Description
0x00	I2C_SLAVE_ID	7:1	R/W	0x30	DEVID	I2C slave ID
		0	R/W	0	DEVID_EN	0: Address from ID[X] Pin 1: Address from Register
0x01	CONFIG1	7	R/W	0	LFMODE	If pin over write bit is one, controls the LF Mode. Debug only
		6	R	0	Reserved	Reserved
		5	R/W	0	SLEW	Control slew rate of LOCK, PASS and GPIO 0: Normal slew 1: Increased Slew
		4	R	0	Reserved	Reserved
		3:2	R/W	0	MODE	00: Normal Mode, Control Signal Filter Disabled 01: Normal Mode, Control Signal Filter Enabled 10: Backwards Compatible (GEN2) 11: Backwards Compatible (GEN1) (See Table 1)
		1	R/W	0	SLEEP	Note – not the same function as PowerDown (PDB pin) 0: Normal mode 1: Sleep Mode – Register settings retained.
		0	R/W	0	USEREG	0: Configurations set from control pins / STRAP pins 1: Override EQ and CONFIC strapped control inputs with register settings
0x02	CONFIG2	7:6	R	0	Reserved	Reserved
		5:4	R/W	00	OMAP	6 bits to 8 bits color mapping 00: bit 4, 5 repeated on LSE 01: LSB zero if all data is ze 10: LSB zero 11: LSB zero
		3	R	0	Reserved	Reserved
		2:0	R/W	3'b100	Reserved	Reserved
0x03	EQ Control	7:4	R/W	000	EQ	Override EQ pin input if USEREG bit set
		3:0	R	0	Reserved	Reserved
0x04	CMLOUT Config	7	R/W	0	CMLOUT	Loop through enable 0: Output CMLOUT+/- = disabled 1: Output CMLOUT+/- = enabled
		6:0	R/W	0	VOD	VOD control 000000: min VOD 00001: 000011: 000111: 001111: 011111: 111111: max VOD
)x05->	NA	7:0	R/W	0	Reserved	Reserved

SNLS414C -JUNE 2012-REVISED MAY 2013

www.ti.com

ADD (hex)	Register Name	Bit(s)	R/W	Default	Field	Description
0x11	CSI config	7	R/W	0	CCI_INV_VS	0: VS is active low pulse 1: VS is active high pulse
		6	R/W	0	CCI_CONT_CLOCK	0: CSI-2 non-continuous clock 1: CSI-2 continuous clock
		5:2	R/W	0	Reserved	Reserved
		1	R/W	0	CCI_EXTERNAL_TIMING	0: Use computed DPHY timing based on frame length 1: Use manual override values for DPHY timing
		0	R/W	0	CCI_INV_DE	0: DE is active low pulse 1: DE is active high pulse
0x12	CSI_FRM_GAP_0	7:0	R/W	0	CSI_FRM_GAP_0	Defined the delay between the start frame and end frame packet (lower byte)
0x13	CSI_FRM_GAP_1	7:0	R/W	0	CSI_FRM_GAP_1	Defined the delay between the start frame and end frame packet (upper byte)
0x14	CSI_TIMING0	7:5		0	Reserved	Reserved
		4:0	R/W	0	TCLK_PREPARE	Defines the Tclk_prepare parameter if CCI_EXTERNAL_TIMING is set
0x15	CSI_TIMING1	7:3	R/W	0	TCLK_ZERO	Defines the Tclk_zero parameter if CCI_EXTERNAL_TIMING is set
		2:0	R/W	0	TCLK_TRAIL	Defines the Tclk_trail parameter if CCI_EXTERNAL_TIMING is set
0x16	CSI_TIMING2	7:4	R/W	0	TCLK_POST	Defines the Tclk_post parameter if CCI_EXTERNAL_TIMING is set
		3:0	R/W	0	THS_ZERO	Defines the Ths_zero parameter if CCI_EXTERNAL_TIMING is set
0x17	CSI_TIMING3	7	R/W	0	Reserved	Reserved
		6:4	R/W	0	THS_TRAIL	Defines the Ths_trail parameter if CCI_EXTERNAL_TIMING is set
		3:0	R/W	0	THS_EXIT	Defines the Ths_exit parameter if CCI_EXTERNAL_TIMING is set
0x18	CSI_TIMING4	7:3	R/W	0	THS_PREPARE	Defines the Ths_prepare parameter if CCI_EXTERNAL_TIMING is set
		2:0	R/W	0	TLPX	Defines the Ths_exit parameter if CCI_EXTERNAL_TIMING is set

www.ti.com

SNLS414C-JUNE 2012-REVISED MAY 2013

Table 6. Serial Bus Control Registers (continued)

ADD (hex)	Register Name	Bit(s)	R/W	Default	Field	Description						
0x19	CSI_ULPS	7:3	R/W	0	Reserved	Reserved						
		1	R/W	0	ULPS_MODE	0: In ULPS mode, data lane off 1: In ULPS mode, data lane off, clock lane off, x6 PLL off						
		0	R/W	0	ULPS_EN	0: Disable UPLS mode 1: Enable ULPS mode						
0x1A	NA	7:0	R/W	0	Reserved	Reserved						
0x1B	CSI_UNH1	7	R/W	0	Reserved	Reserved						
		6:5	R/W	0x1	ACT_VERT_MSB	MSBs of active vertical UNH image						
		4:3	R/W	0x2	TOT_VERT_MSB	MSBs of total vertical UNH image						
		2:1	R/W	0	Reserved	Reserved						
		0	R/W	0	PATGEN	0: Normal mode 1: Enable pattern generator mode						
0x1C	CSI_UNH2	7:0	R/W	0x0F	TOT_VERT_LSB	LSBs of total vertical UNH image						
0x1D	CSI_UNH3	7:0	R/W	0xDF	ACT_VERT_LSB	LSBs of active vertical UNH image						
0x1E	CSI_UNH4	7:6	R/W	0	Reserved	Reserved						
		5:3	R/W	0x4	ACT_HORIZ_MSB	MSBs of active horizontal UNH image						
		2:0	R/W	0x5	TOT_HORIZ_MSB	MSBs of total horizontal UNH image						
0x1F	CSI_UNH5	7:0	R/W	0xFF	ACT_HORIZ_LSB	LSBs of active horizontal UNH image						
0x20	CSI_UNH6	7:0	R/W	0xFF	TOT_HORIZ_LSB	LSBs of total horizontal UNH image						
0x21	CSI_UNH7	7:0	R/W	0x09	PORCH_VERT	Vertical porch size UNH image						
0x22	CSI_UNH8	7:0	R/W	0x09	SYNC_VERT	Vertical sync size UNH image						
0x23	CSI_UNH9	7:0	R/W	0x09	PORCH_HORIZ	Horizontal porch size UNH image						
0x24-> 0x2F	NA	7:0	R/W	0	Reserved	Reserved						
0x30	CSI_ID0	7:0	R	0x5F	CID0	Chip ID, character "_"						
0x31	CSI_ID1	7:0	R	0x55	CID1	Chip ID, character "U"						
0x32	CSI_ID2	7:0	R	0x52	CID2	Chip ID, character "R"						
0x33	CSI_ID3	7:0	R	0x39	CID3	Chip ID, character "9"						
0x33	CSI_ID4	7:0	R	0x31	CID4	Chip ID, character "1"						
0x35	CSI_ID5	7:0	R	0x30	CID5	Chip ID, character "0"						
0x36	CSI_REVID	7:0	R	0x01	CID5	Revision ID of the design						
0x37-> 0x3A	NA	7:0	R	0	Reserved	Reserved						
0x3B	REVID	7:0	R	0x01	REVID	Revision ID of the design						
0x3C-> 0x3F	NA	7:0	R	0	Reserved	Reserved						
0x40-> 0xFF						Address range 0x00 to 0x3F aliases into the full address space.						

www.ti.com

ULTRA LOW POWER STATE

DS90UR910Q D-PHY Lanes will enter ULPS mode upon software standby mode through CCI generated by Application Processor. When ULPS is entered, all lanes including the clock and data lanes are put in ULPS according to the MIPI D-PHY protocol. D-PHY can reduce power consumption by entering ULPS mode.

Ultra-Low Power State Entry Command is sent after an Escape mode Entry command through CCI, and then Lane shall enter the Ultra-Low Power State (ULPS). When ULPS is entered, all lanes including the clock and data lanes are put in ULPS according to the MIPI DPHY protocol. Typically an ULPS entry command is used but other sequences can be used also. Ultra-Low Power State is exited by means of a Mark-1 state with a length TWAKEUP followed by a Stop state. Reference: [1] D-PHY Specification, Section 5.6.3, Line 895

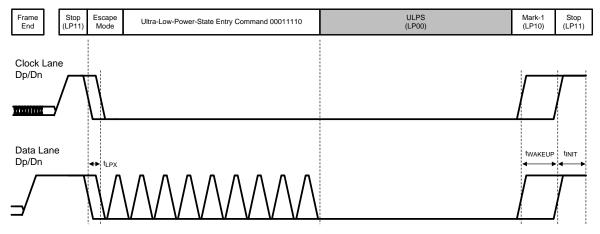


Figure 14. Ultra-Low Power State

DISPLAY TIMING REQUIREMENTS

Table 7 shows the supported display resolutions for the DS90UR910Q. The display timings assume an estimated overall blanking rate of 1.2. The DS90UR910Q will automatically detect the incoming data rate by from the frame rate (by measuring VS). This timing is then mapped into a look up table. The lookup table is used for any pixel rate from PCLK of 10 MHz to 65 MHz. The limitation that it assumes the frame rate is 60fps and 30fps. An override option will be available to set each of the parameter individually for a data rate that is not listed in the table. Option is programmed through CCI. Operation of frequencies above 65 MHz require additional I2C/CCI programming of CSI_TIMING registers.

SNLS414C-JUNE 2012-REVISED MAY 2013

www.ti.com

Table 7. DS90UR910Q Supported resolution and refresh rates with expected blanking period

Resolution	Hactive (pixels)	Hblank (pixels)	Htotal (pixels)	Vactive (lines)	Vblank (lines)	Vtotal (lines)	Frame size (pixels)	Refresh (Hz)	PCIk (MHz)
400x240	400	40	440	240	5	245	107800	60	6.468
640x240	640	40	680	240	5	245	166600	60	9.996
800x480	800	40	840	480	5	485	407400	60	24.444
1280x480	1280	40	1320	480	5	485	640200	60	38.412
640x480	640	144	784	480	29	509	399056	60	23.94336
800x600	800	256	1056	600	28	628	663168	60	39.79008
960x160	960	40	1000	160	5	165	165000	60	9.9
640x160	640	40	680	160	5	165	112200	60	6.732
480x240	480	96	576	240	24	264	152064	60	9.12384
800x480	800	160	960	480	48	528	506880	60	30.4128
1280x480	1280	256	1536	480	48	528	811008	60	48.66048
960x540	960	192	1152	540	54	594	684288	60	41.05728
1440x540	1440	288	1728	540	54	594	1026432	60	61.58592
1000x600	1000	200	1200	600	60	660	792000	60	47.52
640x480	640	160	800	480	45	525	420000	60	25.2
800x600	800	256	1056	600	28	628	663168	60	39.79008
1024x768	1024	320	1344	768	38	806	1083264	60	64.99584
1440x550	1440	144	1584	550	55	605	958320	60	57.4992
800x480	800	256	1056	480	45	525	554400	60	33.264
800x480	800	256	1056	480	45	525	554400	30	16.632
1024x480	1024	52	1076	480	24	504	542304	60	32.53824
1024x480	1024	52	1076	480	24	504	542304	30	16.26912
1024x480	1024	100	1124	480	48	528	593472	60	35.60832
1024x480	1024	100	1124	480	48	528	593472	30	17.80416
1440x550	1440	154	1594	550	55	605	964370	60	57.8622
1440x550	1440	154	1594	550	55	605	964370	30	28.9311

APPLICATIONS INFORMATION

TYPICAL APPLICATION CONNECTION

Figure 15 shows a typical application of the DS90UR910Q in Pin control mode for a 24-bit Color Display Application. The LVDS signals require 100 nF AC coupling capacitors to the line. The line driver includes internal termination. Bypass capacitors are placed near the power supply pins. At a minimum, four 0.1 µF capacitors and a 4.7 µF capacitor should be used for local device bypassing. System GPO (General Purpose Output) signals control the PDB and BISTEN pins. The interface to the host is with 1.8 V LVCMOS levels, thus the VDDIO pin is connected also to the 1.8V rail. The Optional I2C/CCI is connected to the Host bus in this example, thus the SCL and SDA pins are using pull-up resistors R to VDDIO. A delay cap is placed on the PDB signal to delay the enabling of the device until power is stable.

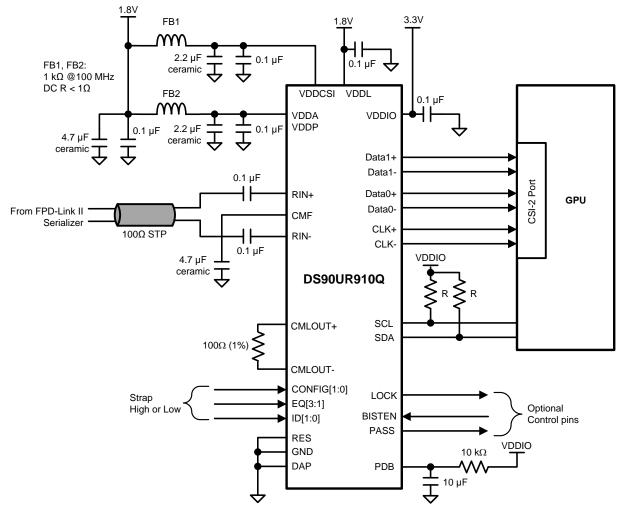


Figure 15. DS90UR910Q Typical Connection Diagram — Pin Control

POWER UP REQUIREMENTS AND PDB PIN

The VDD (V_{DDn} and V_{DDIO}) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms then a capacitor on the PDB pin is needed to ensure PDB arrives after all the VDD have settled to the recommended operating voltage. When PDB pin is pulled to V_{DDIO} , it is recommended to use a 10 k Ω pull-up and a >10 uF cap to GND to delay the PDB input signal.

Copyright © 2012-2013, Texas Instruments Incorporated

PRODUCT PREVIEW

SNLS414C - JUNE 2012 - REVISED MAY 2013

TRANSMISSION MEDIA

The Ser/Des chipset is intended to be used in a point-to-point configuration, through a PCB trace, or through twisted pair cable. The Ser and Des provide internal terminations providing a clean signaling environment. The interconnect for LVDS should present a differential impedance of 100 Ohms. Use cables and connectors that have matched differential impedance to minimize impedance discontinuities. Shielded or un-shielded cables may be used depending upon the noise environment and application requirements.

PCB LAYOUT AND POWER SYSTEM CONSIDERATIONS

Circuit board layout and stack-up for the LVDS Ser/Des devices should be designed to provide low-noise power feed to the device. Good layout practice will also separate high frequency or high-level inputs and outputs to minimize unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the range of 0.01 uF to 0.1 uF. Tantalum capacitors may be in the 2.2 uF to 10 uF range. Voltage rating of the tantalum capacitors should be at least 5X the power supply voltage being used.

Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power entry. This is typically in the 50uF to 100uF range and will smooth low frequency switching noise. It is recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external bypass capacitor will increase the inductance of the path.

A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing the impedance at high frequency.

Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate switching noise effects between different circuit sections. Separate PCB planes are typically not required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power pin pairs. In some cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs.

Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely-coupled differential lines of 100 Ohms are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled noise will appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less.

Information on the WQFN style package is provided in Application Note: AN-1187 / SNOA401.

LVDS INTERCONNECT GUIDELINES

See AN-1108 and AN-905 for full details.

- Use 100Ω coupled differential pairs
 - Use the S/2S/3S rule in spacings
 - S = space between the pair
 - 2S = space between pairs
 - 3S = space to LVCMOS signal
- Minimize the number of Vias and skew within the pair
- Use differential connectors when operating above 500 Mbps line speed
- Maintain balance of the traces
- Terminate as close to the TX outputs and RX inputs as possible

www.ti.com

SNLS414C - JUNE 2012 - REVISED MAY 2013

Additional general guidance can be found in the LVDS Owner's Manual - available in PDF format from the Texas Instruments web site at: www.ti.com/lvds

REVISION HISTORY

REVISION	DESCRIPTION
9/17/2012	DS90UR910Q DATASHEET – Initial Release
10/23/2012	Updated Pin Diagram
5/2/2013	Changed layout of National Data Sheet to TI format

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated