OBSOLETE

54ACQ244, 54ACTQ244

www.ti.com

SNOS059B-AUGUST 1998-REVISED APRIL 2013

54ACQ244 • 54ACTQ244 Quiet Series Octal Buffer/Line Driver with TRI-STATE Outputs

Check for Samples: 54ACQ244, 54ACTQ244

FEATURES

- I_{CC} and I_{OZ} Reduced by 50%
- **Ensured Simultaneous Switching Noise Level** • and Dynamic Threshold Performance
- Improved Latch-Up Immunity
- **TRI-STATE Outputs Drive Bus Lines or Buffer** Memory Address Registers
- **Outputs Source/Sink 24 mA** .
- Faster Prop Delays than the Standard 'AC/'ACT244
- **4 kV Minimum ESD Immunity**
- Standard Microcircuit Drawing (SMD)
 - 'ACTQ244: 5962-92186
 - 'ACQ244: 5962-92176

Logic Symbol

DESCRIPTION

The 'ACQ/'ACTQ244 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density. The ACQ/ACTQ utilizes TI Quiet Series technology to ensure quiet output switching and improved dynamic threshold performance. FACT Quiet Series™ features GTO[™] output control and undershoot corrector in addition to a split ground bus for superior performance.

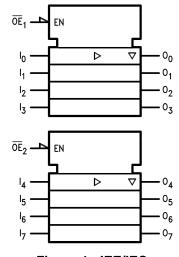
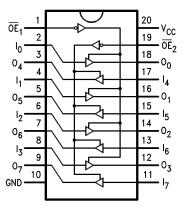


Figure 1. IEE/IEC

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	TRI-STATE Output Enable Inputs
I ₀ —I ₇	Inputs
O ₀ –O ₇	Outputs

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. GTO is a trademark of Texas Instruments.


FACT Quiet Series is a trademark of Fairchild Semiconductor Corporation. FACT is a registered trademark of Fairchild Semiconductor Corporation. All other trademarks are the property of their respective owners.

TEXAS INSTRUMENTS

www.ti.com

SNOS059B-AUGUST 1998-REVISED APRIL 2013

Connection Diagrams

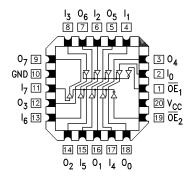


Figure 3. Pin Assignment for LCCC

Truth	Table
mun	Iable

Inpu	uts	Outputs
OE ₁	I _n	(Pins 12, 14, 16, 18)
L	L	L
L	Н	н
н	х	Z
Inpu	uts	Outputs
OE ₂	l _n	(Pins 3, 5, 7, 9)
L	L	L
L	Н	н
н	х	Z
H = HIGH VoltagL = LOW VoltagX = ImmaterialZ = High Impeda	e Level	

www.ti.com

SNOS059B – AUGUST 1998–REVISED APRIL 2013

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾⁽²⁾

Supply Voltage (V _{CC})		-0.5V to +7.0V
	V ₁ = -0.5V	-20 mA
DC Input Diode Current (I _{IK})	$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	Voltage (V _I)	
DC Output Diada Current (L.)	$V_{O} = -0.5V$	-20 mA
DC Output Diode Current (I _{OK})	$V_{\rm O} = V_{\rm CC} + 0.5 V$	+20 mA
DC Output Voltage (V _O)		-0.5V to V _{CC} + 0.5V
DC Output Source or Sink Current (I _O)		±50 mA
DC V_{CC} or Ground Current per Output Pin (I _{CC} or	I _{GND})	±50 mA
Storage Temperature (T _{STG})		−65°C to +150°C
DC Latch-Up Source or Sink Current		±300 mA
Junction Temperature (T _J)	CDIP	175°C

(1) Absolute Maximum Ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. TI does not recommend operation of FACT[®] circuits outside databook specifications.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

Recommended Operating Conditions

	'ACQ	2.0V to 6.0V
Supply Voltage (V _{CC})	'ACTQ	4.5V to 5.5V
Input Voltage (VI)		0V to V _{CC}
Output Voltage (V _O)		0V to V _{CC}
Operating Temperature (T _A)	54ACQ/ACTQ	−55°C to +125°C
Minimum Input Edge Rate ΔV/Δt 'ACQ Devices	V_{IN} from 30% to 70% of V_{CC}	
	V _{CC} @ 3.0V, 4.5V, 5.5V	125 mV/ns
	V _{IN} from 0.8V to 2.0V	
Minimum Input Edge Rate ΔV/Δt 'ACTQ Devices	V _{CC} @ 4.5V, 5.5V	125 mV/ns

ÈXAS NSTRUMENTS

SNOS059B-AUGUST 1998-REVISED APRIL 2013

www.ti.com

DC Electrical Characteristics for 'ACQ Family Devices

			54ACQ		
Symbol	Parameter	V _{cc}	T _A = −55°C to +125°C	Units	Conditions
		(V)	Ensured Limits		
V _{IH}	Minimum High Level	3.0	2.1		V _{OUT} = 0.1V
	Input Voltage	4.5	3.15	V	or V _{CC} – 0.1V
		5.5	3.85		
V _{IL}	Maximum Low Level	3.0	0.9		V _{OUT} = 0.1V
	Input Voltage	4.5	1.35	V	or V _{CC} – 0.1V
		5.5	1.65		
V _{OH}	Minimum High Level	3.0	2.9		I _{OUT} = −50 μA
	Output Voltage	4.5	4.4	V	
		5.5	5.4		
					See ⁽¹⁾
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0	2.4		I _{OH} = −12 mA
		4.5	3.7	V	I _{OH} = −24 mA
		5.5	4.7		I _{OH} = −24 mA
V _{OL}	Maximum Low Level	3.0	0.1		I _{OUT} = 50 μA
	Output Voltage	4.5	0.1	V	
		5.5	0.1		(4)
		3.0	0.50		I _{OL} = 12 mA
		4.5	0.50	V	I _{OL} = 24 mA
		5.5	0.50		I _{OL} = 24 mA
I _{IN}	Maximum Input	5.5	±1.0	μA	$V_I = V_{CC}, GND^{(2)}$
	Leakage Current				
I _{OLD}	Minimum Dynamic	5.5	50	mA	V_{OLD} = 1.65V Max
I _{OHD}	Output Current ⁽³⁾	5.5	-50	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5	80.0	μA	$V_{IN} = V_{CC}$
	Supply Current				or GND ⁽²⁾
I _{OZ}	Maximum TRI-STATE				$V_{I}(OE) = V_{IL}, V_{IH}$
	Leakage Current	5.5	±5.0	μA	$V_{I} = V_{CC}, GND$
					$V_{O} = V_{CC}, GND$
V _{OLP}	Quiet Output	5.0	1.5	V	See ⁽⁴⁾⁽⁵⁾
	Maximum Dynamic V _{OL}				
V _{OLV}	Quiet Output	5.0	-1.2	V	See ⁽⁴⁾⁽⁵⁾
	Minimum Dynamic V _{OL}				

All outputs loaded thresholds on input associated with output under test. (1)

 $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are ensured to be less than or equal to the respective limit @ 5.5V V_{CC}.I_{CC} for 54ACQ @ 25°C is identical to 74ACQ @ 25°C. (2)

Maximum test duration 2.0 ms, one output loaded at a time. (3)

(4) PDIP package.

(5) Max number of outputs defined as (n). Data Inputs are driven 0V to 5V. One output @ GND.

Copyright © 1998–2013, Texas Instruments Incorporated

www.ti.com

SNOS059B-AUGUST 1998-REVISED APRIL 2013

54ACTQ					
Parameter	V _{cc}	-55°C to +125°C	Units	Conditions	
	(V)	Ensured Limits			
Minimum High Level	4.5	2.0	V	V _{OUT} = 0.1V	
Input Voltage	5.5	2.0		or V_{CC} – 0.1V	
Maximum Low Level	4.5	0.8	V	$V_{OUT} = 0.1V$	
Input Voltage	5.5	0.8		or V_{CC} – 0.1V	
Minimum High Level	4.5	4.4	V	I _{OUT} = -50 μA	
Output Voltage	5.5	5.4			
				$\frac{\text{See}^{(1)}}{\text{V}_{\text{IN}} = \text{V}_{\text{IL}} \text{ or } \text{V}_{\text{IH}}}$	
	4.5	3.70	V	I _{OH} = −24 mA	
	5.5	4.70		I _{OH} = −24 mA	
Maximum Low Level	4.5	0.1	V	I _{OUT} = 50 μA	
Output Voltage	5.5	0.1			
				$ See^{(1)} \\ V_{IN} = V_{IL} \text{ or } V_{IH} $	
	4.5	0.50	V	I _{OL} = 24 mA	
	5.5	0.50		I _{OL} = 24 mA	
Maximum Input	5.5	±1.0	μA	$V_I = V_{CC}, GND$	
-		·E 0		$V_{I} = V_{IL}, V_{IH}$	
	5.5	±5.0	μΑ		
-	5.5	1.6	mA	$V_0 = V_{CC}$, GND $V_1 = V_{CC} - 2.1V$	
				$V_1 = V_{CC} - 2.1V$ $V_{OLD} = 1.65V$ Max	
				$V_{OLD} = 1.05V Max$ $V_{OHD} = 3.85V Min$	
				$V_{\rm IN} = V_{\rm CC}$	
	0.0	00.0	μ.,	or $GND^{(3)}$	
	5.0	1.5	V	See ^{(4) (5)}	
	0.0	1.0	v		
	5.0	-12	V	See ^{(4) (5)}	
	0.0	1.2	v		
	Minimum High Level Input Voltage Maximum Low Level Input Voltage Minimum High Level Output Voltage Maximum Low Level Output Voltage	No.No.Minimum High Level4.5Input Voltage5.5Maximum Low Level4.5Input Voltage5.5Minimum High Level4.5Output Voltage5.5Maximum Low Level4.5Output Voltage5.5Maximum Low Level4.5Output Voltage5.5Maximum Low Level4.5Output Voltage5.5Maximum Low Level4.5Output Voltage5.5Maximum Input5.5Leakage Current5.5Maximum Input5.5Leakage Current5.5Maximum Ucc/Input5.5Maximum Quiescent5.5Supply Current5.5Quiet Output5.0Maximum Dynamic V_{OL} 5.0Quiet Output5.0	(V) Ensured Limits Minimum High Level 4.5 2.0 Input Voltage 5.5 2.0 Maximum Low Level 4.5 0.8 Input Voltage 5.5 0.8 Minimum High Level 4.5 4.4 Output Voltage 5.5 5.4 Maximum Low Level 4.5 3.70 5.5 5.4 5.5 Maximum Low Level 4.5 0.1 Output Voltage 5.5 0.1 Maximum Low Level 4.5 0.1 Output Voltage 5.5 0.50 Maximum Input 5.5 0.50 Leakage Current 5.5 1.0 Maximum Input 5.5 1.6 Maximum Nopamic ⁽²⁾ 5.5 50 Output Current 5.5 50 Maximum Quiescent 5.5 80.0 Supply Current 5.0 1.5 Quiet Output 5.0 1.5 Maximum Dynamic V _{OL} 7.0 1.5 </td <td>(V) Ensured Limits Minimum High Level 4.5 2.0 V Input Voltage 5.5 2.0 V Maximum Low Level 4.5 0.8 V Input Voltage 5.5 0.8 V Minimum High Level 4.5 4.4 V Output Voltage 5.5 5.4 V Maximum Low Level 4.5 3.70 V 4.5 3.70 V 5.5 4.70 Maximum Low Level 4.5 0.1 V Output Voltage 5.5 0.50 V Maximum Input 5.5 9.5 0.50 V Maximum Input 5.5 1.6 mA Leakage Current 5.5 50 mA Maximum Input 5.5 50 mA Leakage Current 5.5 9.5 mA Maximum Input 5.5 50 mA Quipt Current 5.5 80.0 µA</td>	(V) Ensured Limits Minimum High Level 4.5 2.0 V Input Voltage 5.5 2.0 V Maximum Low Level 4.5 0.8 V Input Voltage 5.5 0.8 V Minimum High Level 4.5 4.4 V Output Voltage 5.5 5.4 V Maximum Low Level 4.5 3.70 V 4.5 3.70 V 5.5 4.70 Maximum Low Level 4.5 0.1 V Output Voltage 5.5 0.50 V Maximum Input 5.5 9.5 0.50 V Maximum Input 5.5 1.6 mA Leakage Current 5.5 50 mA Maximum Input 5.5 50 mA Leakage Current 5.5 9.5 mA Maximum Input 5.5 50 mA Quipt Current 5.5 80.0 µA	

(1) All outputs loaded thresholds on input associated with output under test.

(2) Maximum test duration 2.0 ms, one output loaded at a time.

(3) I_{CC} for 54ACTQ @ 25°C is identical to 74ACTQ @ 25°C.

(4) PDIP package.

(5) Max number of outputs defined as (n). Data Inputs are driven 0V to 3V. One output @ GND.

SNOS059B-AUGUST 1998-REVISED APRIL 2013

www.ti.com

AC Electrical Characteristics

Symbol	Parameter	V _{CC} (V) ⁽¹⁾	V_{CC} $T_A = -52$ (V) ⁽¹⁾ to +125		54ACQ T _A = -55°C to +125°C C _L = 50 pF		V_{CC} $T_A = -55^{\circ}C$ $(V)^{(1)}$ to +125^{\circ}C Units		Units	Fig. No.
			Min	Max						
t _{PHL,} t _{PLH}	Propagation Delay	3.3	1.0	12.5	ns					
	Data to Output	5.0	1.0	9.0						
t _{PZL,} t _{PZH}	Output Enable Time	3.3	1.0	12.0	ns					
		5.0	1.0	10.0						
t _{PHZ,} t _{PLZ}	Output Disable Time	3.3	1.0	11.5	ns					
		5.0	1.0	10.0						

(1) Voltage Range 5.0 is 5.0V \pm 0.5V. Voltage Range 3.3 is 3.3V \pm 0.3V.

AC Electrical Characteristics

Symbol	Parameter	V _{CC} (V) ⁽¹⁾	T _A = to +2	CTQ –55°C I25°C 50 pF	Units	Fig. No.
			Min	Мах		
t _{PHL} , t _{PLH}	Propagation Delay	5.0	1.5	9.0	ns	
	Data to Output					
t _{PZL} , t _{PZH}	Output Enable Time	5.0	1.5	10.5	ns	
t _{PHZ} , t _{PLZ}	Output Disable Time	5.0	1.5	10.5	ns	

(1) Voltage Range 5.0 is $5.0V \pm 0.5V$.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	70	pF	$V_{CC} = 5.0V$

Copyright © 1998–2013, Texas Instruments Incorporated

www.ti.com

Page

SNOS059B-AUGUST 1998-REVISED APRIL 2013

REVISION HISTORY

Changes	from	Revision	Δ	(An	ril (2013)	to	Revision	R
Changes	nom	Revision	А	(AP		2013)	ιο	Revision	D

 Chang 	yout of National Data Sheet to TI format
---------------------------	--

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated