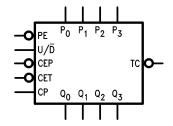


SNOS092B - JULY 1998 - REVISED APRIL 2013


54AC169 • 54ACT169 4-Stage Synchronous Bidirectional Counter

Check for Samples: 54AC169, 54ACT169

FEATURES

- I_{CC} Reduced by 50%
- **Synchronous Counting and Loading**
- **Built-In Lookahead Carry Capability**
- **Presettable for Programmable Operation**
- **Outputs Source/Sink 24 mA**
- 'ACT has TTL-Compatible Inputs
- Standard Microcircuit Drawing (SMD)
 - 5962-91603

Logic Symbols

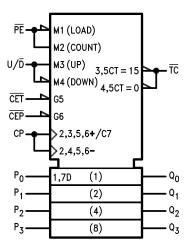


Figure 1. IEEE/IEC

DESCRIPTION

The 'AC/'ACT169 is fully synchronous 4-stage up/down counter. The 'AC/'ACT169 is a modulo-16 binary counter. It features a preset capability for programmable operation, carry lookahead for easy cascading and a U/D input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the LOW-to-HIGH transition of the Clock. ®

Pin Names	Description		
CEP	Count Enable Parallel Input		
CET	Count Enable Trickle Input		
СР	Clock Pulse Input		
P ₀ –P ₃	Parallel Data Inputs		
PE	Parallel Enable Input		
U/D	Up-Down Count Control Input		
Q ₀ –Q ₃	Flip-Flop Outputs		
TC	Terminal Count Output		

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. is a registered trademark of ~Fairchild Semiconductor.

Connection Diagrams

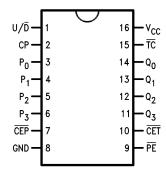
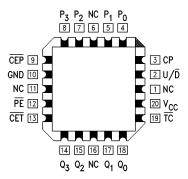
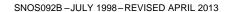


Figure 2. Pin Assignment for CDIP and CLGA See Package Numbers NFE and NAD




Figure 3. Pin Assignment for LCCC See Package Number NAJ

Logic Diagram P1 P2 P3 P4 P5 CET DETAIL A DETAIL A

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Submit Documentation Feedback

NSTRUMENTS

FUNCTIONAL DESCRIPTION

The 'AC/'ACT169 uses edge-triggered J-K-type flip-flops and have no constraints on changing the control or data input signals in either state of the Clock. The only requirement is that the various inputs attain the desired state at least a setup time before the rising edge of the clock and remain valid for the recommended hold time thereafter. The parallel load operation takes precedence over the other operations, as indicated in the Mode Select Table. When \overline{PE} is LOW, the data on the P_0-P_3 inputs enters the flip-flops on the next rising edge of the Clock. In order for counting to occur, both \overline{CEP} and \overline{CET} must be LOW and \overline{PE} must be HIGH; the U/ \overline{D} input then determines the direction of counting. The Terminal Count (\overline{TC}) output is normally HIGH and goes LOW, provided that \overline{CET} is LOW, when a counter reaches zero in the Count Down mode or reaches 15 in the Count Up mode. The \overline{TC} output state is not a function of the Count Enable Parallel (\overline{CEP}) input level. If an illegal state occurs, the 'AC169 will return to the legitimate sequence within two counts. Since the \overline{TC} signal is derived by decoding the flip-flop states, there exists the possibility of decoding spikes on \overline{TC} . For this reason the use of \overline{TC} as a clock signal is not recommended (see logic equations below).

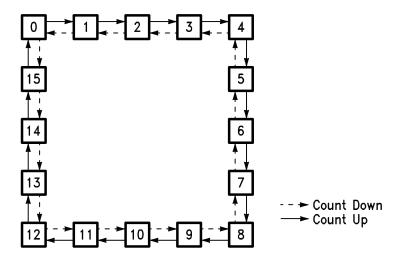

- 1. Count Enable = CEP •CET PE
- 2. Up: $\overline{TC} = Q_0 \cdot Q_1 \cdot Q_2 Q_3 \cdot (Up) \cdot \overline{CET}$
- 3. Down: $\overline{TC} = \overline{Q}_0 \bullet \overline{Q}_1 \bullet \overline{Q}_2 \bullet \overline{Q}_3 \bullet (Down) \bullet \overline{CET}$

Table 1. Mode Select Table (1)

PE	CEP	CET	U/D	Action on Rising Clock Edge
L	Х	Х	Х	Load (P _n to Q _n)
Н	L	L	Н	Count Up (Increment)
Н	L	L	L	Count Down (Decrement)
Н	Н	Х	Х	No Change (Hold)
Н	X	Н	X	No Change (Hold)

(1) H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

State Diagrams

Product Folder Links: 54AC169 54ACT169

TEXAS INSTRUMENTS

SNOS092B-JULY 1998-REVISED APRIL 2013

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS (1)(2)

Supply Voltage (V _{CC})		−0.5V to +7.0V
DC Input Diode Current (I _{IK})	V _I = −0.5V	−20 mA
	$V_I = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V _I)		-0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	V _O = −0.5V	−20 mA
	$V_{O} = -0.5V$ $V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)		-0.5V to V _{CC} + 0.5V
DC Output Source or Sink Current (I _O)		±50 mA
DC V _{CC} or Ground Current per Output Pin (I _{CC} or I _{GND})		±50 mA
Storage Temperature (T _{STG})		−65°C to +150°C
Junction Temperature (T _J) CDIP		175°C

⁽¹⁾ Absolute Maximum Ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Texas Instruments does not recommend operation of FACT circuits outside databook specifications.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage (V _{CC})	'AC	2.0V to 6.0V
	'ACT	4.5V to 5.5V
Input Voltage (V _I)	·	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}	
Operating Temperature (T _A) 54AC/ACT		−55°C to +125°C
Minimum Input Edge Rate (ΔV/Δt)	'AC Devices	
	V_{IN} from 30% to 70% of V_{CC}	
	V _{CC} @ 3.3V, 4.5V, 5.5V	125 mV/ns
Minimum Input Edge Rate (ΔV/Δt)	'ACT Devices	
	V _{IN} from 0.8V to 2.0V	
	V _{CC} @ 4.5V, 5.5V	125 mV/ns

Product Folder Links: 54AC169 54ACT169

⁽²⁾ If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

SNOS092B - JULY 1998 - REVISED APRIL 2013

DC CHARACTERISTICS FOR 'AC FAMILY DEVICES

			54AC			
Symbol	Parameter	V _{CC}	T _A =	Units	Conditions	
		(V)	-55°C to +125°C			
			Specifiied Limits			
V _{IH}	Minimum High Level	3.0	2.1		V _{OUT} = 0.1V	
	Input Voltage	4.5	3.15	V	or V _{CC} - 0.1V	
		5.5	3.85			
V _{IL}	Maximum Low Level	3.0	0.9		V _{OUT} = 0.1V	
	Input Voltage	4.5	1.35	V	or V _{CC} - 0.1V	
		5.5	1.65			
V _{OH}	Minimum High Level	3.0	2.9		I _{OUT} = -50 μA	
	Output Voltage	4.5	4.4	V		
		5.5	5.4			
					See ⁽¹⁾ V _{IN} = V _{IL} or V _{IH}	
		3.0	2.4		I _{OH} = −12 mA	
		4.5	3.7	V	I _{OH} = −24 mA	
		5.5	4.7		I _{OH} = −24 mA	
√ _{OL}	Maximum Low Level	3.0	0.1		I _{OUT} = 50 μA	
	Output Voltage	4.5	0.1	V		
		5.5	0.1			
					See ⁽¹⁾ V _{IN} = V _{IL} or V _{IH}	
		3.0	0.50		I_{OL} = 12 mA	
		4.5	0.50	V	$I_{OL} = 24 \text{ mA}$	
		5.5	0.50		$I_{OL} = 24 \text{ mA}$	
IN	Maximum Input	5.5	±1.0	μA	$V_I = V_{CC}$, GND	
	Leakage Current					
OLD	Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max	
OHD	Output Current ⁽²⁾	5.5	-50	mA	V _{OHD} = 3.85V Min	
CC	Maximum Quiescent	5.5	80.0	μA	$V_{IN} = V_{CC}$	
	Supply Current				or GND	

⁽¹⁾ All outputs loaded; thresholds on input associated with output under test.

⁽²⁾ Maximum test duration 2.0 ms, one output loaded at a time.

TEXAS INSTRUMENTS

SNOS092B-JULY 1998-REVISED APRIL 2013

www.ti.com

DC CHARACTERISTICS FOR 'ACT FAMILY DEVICES

			54ACT		
Symbol	Parameter	V _{CC}	T _A =	Units	Conditions
		(V)	-55°C to +125°C		
			Specified Limits		
V _{IH}	Minimum High Level	4.5	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	2.0		or V _{CC} - 0.1V
V _{IL}	Maximum Low Level	4.5	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	0.8		or V _{CC} - 0.1V
V _{OH}	Minimum High Level	4.5	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.4		
					See ⁽¹⁾ V _{IN} = V _{IL} or V _{IH}
		4.5	3.70	V	I _{OH} = −24 mA
		5.5	4.70		I _{OH} = −24 mA
V _{OL}	Maximum Low Level	4.5	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.1		
					See ⁽¹⁾ V _{IN} = V _{IL} or V _{IH}
		4.5	0.50	V	$I_{OL} = 24 \text{ mA}$
		5.5	0.50		$I_{OL} = 24 \text{ mA}$
I _{IN}	Maximum Input	5.5	±1.0	μA	$V_I = V_{CC}$, GND
	Leakage Current				
Ісст	Maximum	5.5	1.6	mA	V _I = V _{CC} - 2.1V
	I _{CC} /Input				
I _{OLD}	Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current ⁽²⁾	5.5	-50	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5	80.0	μA	$V_{IN} = V_{CC}$
	Supply Current				or GND

⁽¹⁾ All outputs loaded; thresholds on input associated with output under test.

Submit Documentation Feedback

Copyright © 1998–2013, Texas Instruments Incorporated

⁽²⁾ Maximum test duration 2.0 ms, one output loaded at a time.

SNOS092B - JULY 1998 - REVISED APRIL 2013

AC ELECTRICAL CHARACTERISTICS

	Parameter		54AC T _A = -55°C		Units	Fig.
		V _{CC}				
Symbol		(V) ⁽¹⁾	to +1	125°C	Onits	No.
			C _L =	50 pF		
			Min	Max		
f _{max}	Maximum Clock	3.3	55		MHz	
	Frequency	5.0	75		IVII IZ	
t _{PLH}	Propagation Delay	3.3	1.0	15.0		
	CP to Q _n	5.0	1.5	12.0	ns	
	(PE HIGH or LOW)					
t _{PHL}	Propagation Delay	3.3	1.0	16.5		
	CP to Q _n	5.0	1.5	13.0	ns	
	(PE HIGH or LOW)					
t _{PLH}	Propagation Delay	3.3	3.0	22.0	ns	
	CP to TC	5.0	3.0	16.0		
t _{PHL}	Propagation Delay	3.3	3.0	22.0	ns	
	CP to TC	5.0	3.0	16.0		
t _{PLH}	Propagation Delay	3.3	1.0	18.5	ns	
	CET to TC	5.0	1.5	13.0		
t _{PHL}	Propagation Delay	3.3	1.0	16.0	ns	
	CET to TC	5.0	1.5	11.0		
t _{PLH}	Propagation Delay	3.3	1.0	18.5	ns	
	U/D to TC	5.0	1.5	13.0		
t _{PHL}	Propagation Delay	3.3	1.0	16.5	ns	
	U/D to TC	5.0	1.5	12.0		

⁽¹⁾ Voltage Range 3.3 is 3.3V ± 0.3 V Voltage Range 5.0 is 5.0V ± 0.5 V.

AC OPERATING REQUIREMENTS

		V _{cc}	54AC T _A = -55°C		
Symbol	Parameter	(V) ⁽¹⁾	to +125°C	Units	Fig.
			C _L = 50 pF		No.
			Specified Minimum		
t _s	Setup Time,	3.3	7.0		
	HIGH or LOW	5.0	4.5	ns	
	P _n to CP				
t _h	Hold Time, HIGH or LOW	3.3	2.0	ns	
	P _n to CP	5.0	2.5		
t _s	Setup Time,	3.3	13.5		
	HIGH or LOW	5.0	9.0	ns	
	CEP to CP				
t _h	Hold Time, HIGH or LOW	3.3	0.5	ns	
	CEP to CP	5.0	2.5		
t _s	Setup Time,	3.3	13.5		
	HIGH or LOW	5.0	9.0	ns	
	CET to CP				

⁽¹⁾ Voltage Range 3.3 is 3.3V ± 0.3 V Voltage Range 5.0 is 5.0V ± 0.5 V.

Submit Documentation Feedback

SNOS092B-JULY 1998-REVISED APRIL 2013

www.ti.com

AC OPERATING REQUIREMENTS (continued)

			54AC		
		V _{CC}	T _A = −55°C		
Symbol	Parameter	(V) ⁽¹⁾	to +125°C	Units	Fig.
			C _L = 50 pF		No.
			Specified Minimum		
t _h	Hold Time, HIGH or LOW	3.3	0.5	ns	
	CET to CP	5.0	2.5		
t _s	Setup Time,	3.3	8.5		
	HIGH or LOW	5.0	6.5	ns	
	PE to CP				
t _h	Hold Time, HIGH or LOW	3.3	0.5	ns	
	PE to CP	5.0	2.0		
t _s	Setup Time,	3.3	13.0		
	HIGH or LOW	5.0	9.0	ns	
	U/ D to CP				
t _h	Hold Time, HIGH or LOW	3.3	0.5	ns	
	U/D to CP	5.0	2.0		
t _w	CP Pulse Width,	3.3	5.0	ns	
	HIGH or LOW	5.0	5.0		

AC ELECTRICAL CHARACTERISTICS

			54ACT T _A = -55°C			Fig.
		V _{cc}				
Symbol	Parameter	(V) ⁽¹⁾	to +	125°C	Units	No.
			C _L =	50 pF		
			Min	Max		
f _{max}	Maximum Clock	5.0	75		MHz	
	Frequency					
t _{PLH}	Propagation Delay					
	CP to Q _n	5.0	1.5	12.5	ns	
	(PE HIGH or LOW)					
t _{PHL}	Propagation Delay					
	CP to Q _n	5.0	1.5	12.5	ns	
	(PE HIGH or LOW)					
t _{PLH}	Propagation Delay	5.0	1.5	16.5	ns	
	CP to TC					
t _{PHL}	Propagation Delay	5.0	1.5	16.5	ns	
	CP to TC					
t _{PLH}	Propagation Delay	5.0	1.5	13.5	ns	
	CET to TC					
t _{PHL}	Propagation Delay	5.0	1.5	13.5	ns	
	CET to TC					
t _{PLH}	Propagation Delay	5.0	1.5	14.5	ns	
	U/D to TC					
t _{PHL}	Propagation Delay	5.0	1.5	14.5	ns	
	U/D to TC					

⁽¹⁾ Voltage Range 5.0 is $5.0V \pm 0.5V$.

Submit Documentation Feedback

Copyright © 1998–2013, Texas Instruments Incorporated

SNOS092B - JULY 1998 - REVISED APRIL 2013

AC OPERATING REQUIREMENTS

			54ACT		
		V _{CC}	T _A = −55°C		Fig. No.
Symbol	Parameter	(V) ⁽¹⁾	to +125°C	Units	
			C _L = 50 pF		
			Specified Minimum		
t _s	Setup Time,				
	HIGH or LOW	5.0	4.5	ns	
	P _n to CP				
t _h	Hold Time, HIGH or LOW	5.0	2.5	ns	
	P _n to CP				
t _s	Setup Time,				
	HIGH or LOW	5.0	9.0	ns	
	CEP to CP				
t _h	Hold Time, HIGH or LOW	5.0	2.5	ns	
	CEP to CP				
t _s	Setup Time,				
	HIGH or LOW	5.0	9.0	ns	
	CET to CP				
t _h	Hold Time, HIGH or LOW	5.0	2.5	ns	
	CET to CP				
ts	Setup Time,				
	HIGH or LOW	5.0	6.5	ns	
	PE to CP				
t _h	Hold Time, HIGH or LOW	5.0	2.0	ns	
	PE to CP				
t _s	Setup Time,				
	HIGH or LOW	5.0	9.0	ns	
	U/D to CP				
t _h	Hold Time, HIGH or LOW	5.0	2.0	ns	
	U/D to CP				
t _w	CP Pulse Width,	5.0	5.0	ns	
	HIGH or LOW				
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				

⁽¹⁾ Voltage Range 5.0 is 5.0V ±0.5V.

CAPACITANCE

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = Open
C_{PD}	Power Dissipation Capacitance	60.0	pF	V _{CC} = 5.0V

Product Folder Links: 54AC169 54ACT169

54AC169, 54ACT169

9	NOS092B -	$\parallel \parallel \parallel \vee$	1998_	.REVISED	APRII	2013

www.ti.com

R	F۱	/ISI	n	N	HIS	ST(N	RΥ

Changes from Revision A (April 2013) to Revision B				
•	Changed layout of National Data Sheet to TI format		Ş	

Submit Documentation Feedback

Copyright © 1998–2013, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>