

OBSOLETE

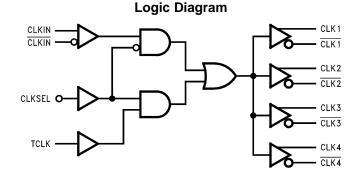
100315

SNOS133B-AUGUST 1998-REVISED APRIL 2013

www.ti.com

100315 Low-Skew Quad Clock Driver

Check for Samples: 100315


FEATURES

- Low Output to Output Skew (≤50 ps) ٠
- **Differential Inputs and Outputs**
- Secondary Clock Available for System Level • Testing
- 2000V ESD Protection
- Voltage Compensated Operating Range: -4.2V to -5.7V
- Standard Microcircuit Drawing (SMD) 5962-9469601

DESCRIPTION

The 100315 contains four low skew differential drivers, designed for generation of multiple, minimum skew differential clocks from a single differential input. This device also has the capability to select a secondary single-ended clock source for use in lower frequency system level testing. The 100315 is a 300 Series redesign of the 100115 clock driver.

Connection Diagram

CLKIN 16 CLKIN V_{EE} 2 15 VEE CLK1 3 14 -CLK4 - CLK4 CLK1 13 CLK2 5 12 - CLK3 CLK2-6 -CLK3 11 V_{CCA} -10 - V_{CC} TCLK · 8 - CLKSEL 9

Figure 1. Flatpak

Pin Names	Description
CLKIN, CLKIN	Differential Clock Inputs
$CLK_{1-4}, \overline{CLK}_{1-4}$	Differential Clock Outputs
TCLK	Test Clock Input ⁽¹⁾
CLKSEL	Clock Input Select ⁽¹⁾

(1) TCLK and CLKSEL are single-ended inputs, with internal 50 kΩ pulldown resistors.

TRUTH TABLE⁽¹⁾

CLKSEL	CLKIN	CLKIN	TCLK	CLK _N	
L	L	Н	Х	L	Н
L	Н	L	Х	н	L
н	Х	Х	L	L	Н
Н	Х	Х	Н	Н	L

(1) L = Low Voltage Level

H = High Voltage Level

X = Don't Care

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

SNOS133B-AUGUST 1998-REVISED APRIL 2013

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS (1)(2)

Storage Temperature	−65°C to +150°C	
Maximum Junction Temperature (T _J)	Ceramic	+175°C
Case Temperature under Bias (T _C)	–55°C to +125°C	
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V	
Input Voltage (DC)	V _{CC} to +0.5V	
Output Current (DC Output HIGH)	-50 mA	
Operating Range ⁽¹⁾	-5.7V to -4.2V	
ESD ⁽³⁾		≥2000∨

(1) Absolute Maximum Ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

(3) ESD testing conforms to MIL-STD-883, Method 3015.

RECOMMENDED OPERATING CONDITIONS

Case Temperature (T _C)	Military	−55°C to +125°C
Supply Voltage (V _{EE})		-5.7V to -4.2V

MILITARY VERSION DC ELECTRICAL CHARACTERISTICS

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND $^{(1)}$

Symbol	Parameter	Min	Тур	Max	Units	Tc	Condi	tions	Notes
V _{OH}	Output HIGH Voltage	-1025		-870	mV	0°C to +125°C			
		-1085		-870	mV	-55°C	$V_{\rm IN} = V_{\rm IH(Max)}$	Loading with	See ⁽¹⁾⁽²⁾⁽³⁾
V _{OL}	Output LOW Voltage	-1830		-1620	mV	0°C to +125°C	or $V_{IL(Min)}$ 50 Ω to -2.0V	50Ω to −2.0V	
		-1830		-1555	mV	−55°C			
V _{OHC}	Output HIGH Voltage	-1035			mV	0°C to +125°C			See ⁽¹⁾⁽²⁾⁽³⁾
		-1085			mV	-55°C	$V_{IN} = V_{IH(Min)}$	Loading with	
V _{OLC}	Output LOW Voltage			-1610	mV	0°C to +125°C	or V _{IL(Max)} 5	50Ω to −2.0V	
				-1555	mV	−55°C			

(1) Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

(2) F100K 300 Series cold temperature testing is performed by temperature soaking (to ensure junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

(3) Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

SNOS133B-AUGUST 1998-REVISED APRIL 2013

www.ti.com

DC ELECTRICAL CHARACTERISTICS

$V_{FF} = -4.2V$ to $-5.7V$, V	$V_{00} = V_{001} = \text{GND}^{(1)}$
$v_{FF} = $	$V_{CC} - V_{CCA} - OND$

Symbol	Parameter	Min	Тур	Max	Units	т _с	Conditions	Notes
V_{DIFF}	Input Voltage Differential	150			mV	−55°C to +125°C	Required for Full Output Swing	See ⁽¹⁾⁽²⁾⁽³⁾
V _{CM}	Common Mode Voltage	V _{CC} – 2.0		V _{CC} - 0.5	V	−55°C to +125°C		See ⁽¹⁾⁽²⁾⁽³⁾
V _{IH}	Single-Ended Input High Voltage	-1165		-870	mV	−55°C to +125°C	Specified HIGH Signal for All Inputs	See ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾
V _{IL}	Single-Ended Input Low Voltage	-1830		-1475	mV	−55°C to +125°C	Specified LOW Signal for All Inputs	See ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾
I _{IH}	Input HIGH Current CLKIN, CLKIN			150	μA	−55°C to +125°C	$V_{IN} = V_{IH(Max)}$	See ⁽¹⁾⁽²⁾⁽³⁾
	TCLK			450	μA			
	CLKSEL			380	μA			
I _{CBO}	Input Leakage Current	-10			μA	−55°C to +125°C	$V_{IN} = V_{EE}$	See ⁽¹⁾⁽²⁾⁽³⁾
I _{EE}	Power Supply Current, Normal	-80		-25	mA	−55°C to +125°C		See ⁽¹⁾⁽²⁾⁽³⁾

(1)Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

F100K 300 Series cold temperature testing is performed by temperature soaking (to ensure junction temperature equals -55°C), then (2) testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures. Screen tested 100% on each device at -55° C, $+25^{\circ}$ C, and $+125^{\circ}$ C, Subgroups 1, 2, 3, 7, and 8.

(4) Ensured by applying specified input condition and testing V_{OH}/V_{OL} .

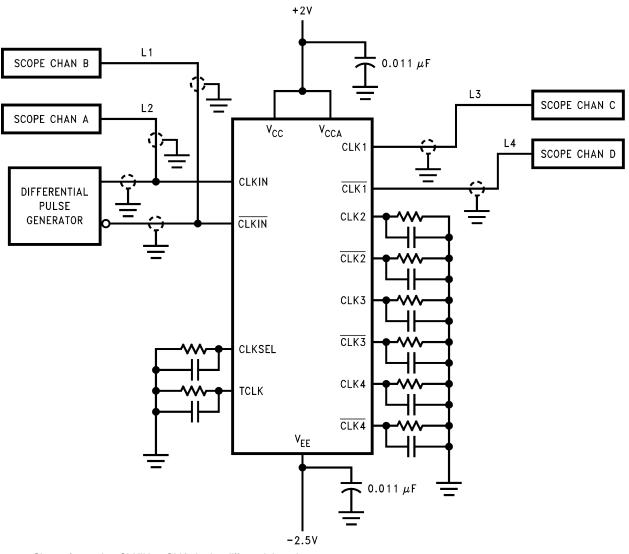
AC ELECTRICAL CHARACTERISTICS

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C = −55°C		T _C = +25°C		T _C = +125°C		Unite	Conditions	Nataa
		Min	Max	Min	Max	Min	Max	Units	Conditions	Notes
t _{PLH} , t _{PHL}	Propagation Delay CLKIN, CLKIN to $CLK_{(1-4)}$, $\overline{CLK}_{\overline{(1-4)}}$	0.58	0.88	0.63	0.88	0.72	1.02	ns	Figure 2, Figure 3	See ⁽¹⁾⁽²⁾⁽³⁾
t _{PLH} , t _{PHL}	Propagation Delay, TCLK to $CLK_{(1-4)}$, $\overline{CLK}_{(1-4)}$	0.30	1.60	0.30	1.50	0.40	1.70	ns		
t _{S G-G}	Skew Gate to Gate (4)		120		100		120	ps		See ⁽³⁾
t _{TLH} , t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.30	0.90	0.25	0.85	0.20	0.85	ns		

(1) F100K 300 Series cold temperature testing is performed by temperature soaking (to ensure junction temperature equals -55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Screen tested 100% on each device at +25°C temperature only, Subgroup A9. (2)


Sample tested (Method 5005, Table I) on each manufactured lot at +25°C, Subgroup A9, and at +125°C and -55°C temperatures, (3) Subgroups A10 and A11.

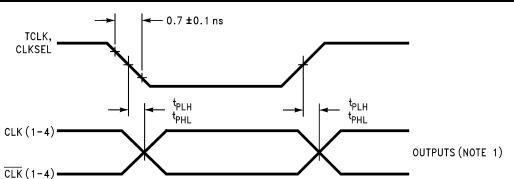
(4)Maximum output skew for any one device.

SNOS133B-AUGUST 1998-REVISED APRIL 2013

www.ti.com

Shown for testing CLKIN to CLK1 in the differential mode.

L1, L2, L3 and L4 = equal length 50 Ω impedance lines.


All unused inputs and outputs are loaded with 50 $\!\Omega$ in parallel with ≤3 pF to GND.

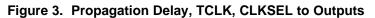

Scope should have 50Ω input terminator internally.

Figure 2. AC Test Circuit

www.ti.com

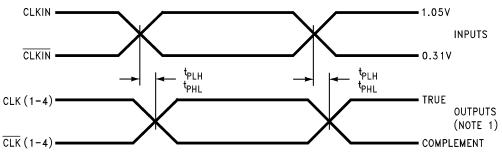
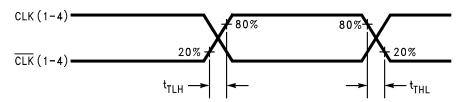



Figure 4. Propagation Delay, CLKIN/CLKIN to Outputs

The output to output skew, which is defined as the difference in the propagation delays between each of the four outputs on any one 100115 shall not exceed 75 ps.

Figure 5. Transition Times

REVISION HISTORY

Changes from Revision A (April 2013) to Revision B

Changed layout of National Data Sheet to TI format	5
--	---

www.ti.com

Page

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated