LM715

LM715 High Speed Operational Amplifier

Literature Number: SNOS373A

© 1995 National Semiconductor Corporation TL/H/10059

RRD-B30M115/Printed in U. S. A.

Abso If Milita please Office/E	lute Maxi ry/Aerospace contact the Distributors for	mum Rat specified de National Se availability a	ings vices are requ miconductor S nd specification	ired, ales 1s.	Intern 10 14	nal Pow L-Metal L-Ceram	er Dissi Can nic DIP	pation ((Notes 1,	2)		1.07W 1.36W	
Storage	Storage Temperature Range			-65°C to +175°C Sup			ge					$\pm18V$	
Operating Temperature Range Extended (LM715M) Commercial (LM715C)			−55°C to +1 0°C to +	Differential Input Voltage 0°C to +125°C 0°C to +70°C			ltage 3)				±5V ±15V		
Lead Te Metal (Solde	mperature Can and Ceram ring, 60 sec.)	ic DIP	3	00°C									
LM71 Elect	5M and L rical Char	M715C acteristi	CS T _A = 25°C,	$V_{CC} = \pm$	15V, un	less oth	erwise	specifie	d	1 M715	<u></u>	1	
Symbol	Parameter		Con	Conditions				Min Tun Mar		Units			
Vio	Innut Offect V	oltage	$B_0 < 10 k0$,		IVIII I	20	5.0	IVIIII	20	7.5	m\/	
	Input Offeet O	urrent		*			70	250		70	250	nΔ	
lip.	Input Rise Cur	rent					400	750		400	1500	nA	
טוי 7ו	Input Impeder						1 0	100		10	1300	MO	
-i Bo	Output Resist	ance					75			75		0	
	Supply Curren	it					55	7.0		55	10	mA	
Pa	Power Consur	mption					165	210		165	300	mW	
						+ 10	+ 12	210	+10	+12		v	
▼IR Auro	Large Signal \	/oltage Gain	$B_{\rm L} > 20 k($	$V_{0} = $	+ 10V	15	30		10	30		V/mV	
V			$V_0 = \pm 50$	$V_{0} = \pm 5.0V A_{1} - 1.0$		-13	800		10	800		ne	
TB	Transient	Bise Time	$V_0 = 400 \text{ m}$	$V A_{V} = $	1.0		30	60		30	75	ns	
	Response	Overshoot	• • • • • • • • • • • • • • • • • • • •	•,,,,,	1.0		25	40		25	50	0/	
SB	Slew Bate		$A_{1/2} = 100$	$A_{14} = 100$			70	40		70	50	/0	
OIT	Olew Hate		$A_{V} = 10$	$A_V = 10$ $A_V = 10 $ (Non-Inverting)			38			38		- V/μs	
			$A_{V} = 1.0$ (N			15	18		10	18			
			$A_V = 1.0$ (II	$A_V = 1.0$ (Inverting)		10	100	-	10	100			
The follo LM715C	wing specificati	ons apply over	the range of -	55°C ≤ T	A ≤ +1	25°C foi	r the LN	/715M,	and 0°C	≤ T _A ≤	⊆ +70°C	for the	
Symbol	Parameter		Conditions	LM715		N		ļ		C		Units	
-,				Min	Тур	Max	1	Min	Тур		Max		
V _{IO}	Input Offset	Voltage	$R_S \le 10 \ k\Omega$			7.5					10	mV	
IIO	Input Offset	Current	$T_A = T_{A Max}$			250					250	nA	
			$T_A = T_A Min$			800					750		
I _{IB}	Input Bias Cu	urrent	$T_A = T_A Max$			0.75	_				1.5	μΑ	
			$T_A = T_A Min$	<u> </u>		4.0					7.5		
CMR	Common Mc Rejection	ode	$R_S \le 10 \ k\Omega$	74	92		(N	74 ote 4)	92 (Note 4	4)		dB	
PSRR	Power Suppl Rejection Ra	y itio	$R_S \le 10 k\Omega$		45	300			45 (Note 4	4) (M	400 lote 4)	μV/V	
A _{VS}	Large Signal F Voltage Gain N		$\begin{array}{l} R_L \geq 2.0 \ k\Omega, \\ V_O = \ \pm 10 V \end{array}$	10				8				V/mV	
	1					-							

Note 2: Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 10L-Metal Can at 7.1 mW/°C, and the 14L-Ceramic DIP at 9.1 mW/°C. **Note 3:** For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage. **Note 4:** $T_A = 25^{\circ}C$ only.

Г

Applications Information

Non-Inverting Compensation Components Values

Closed Loop Gain	C1	C2	C3	
1000	10 pF			
100	50 pF		250 pF	
10 (Note)	100 pF	500 pF	1000 pF	
1	500 pF	2000 pF	1000 pF	

Note: For gain 10, compensation may be simplified by removing C2, C3 and adding a 200 pF capacitor (C4) between Lead 7 and 10.

Frequency Compensation Circuit

Suggested Values of Compensation Capacitors vs Closed Loop Voltage Gain

TL/H/10059-9

Layout Instructions

Layout—The layout should be such that stray capacitance is minimal.

Supplies—The supplies should be adequately bypassed. Used of 0.1 μF high quality ceramic capacitors is recommended.

Note: All lead numbers on this page apply to metal package.

Ringing—Excessive ringing (long acquisition time) may occur with large capacitive loads. This may be reduced by isolating the capacitive load with a resistance of 100Ω . Large source resistances may also give rise to the same problem and this may be decreased by the addition of a capacitance across the feedback resistance. A value of around 50 pF for unity gain configuration and around 3.0 pF for gain 10 should be adequate.

Latch Up—This may occur when the amplifier is used as a voltage follower. The inclusion of a diode between leads 6 and 2 with the cathode toward lead 2 is the recommended preventive measure.

Typical Applications

High Speed Integrator

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated