

LMC6008

LMC6008 8 Channel Buffer

Literature Number: SNOS740A

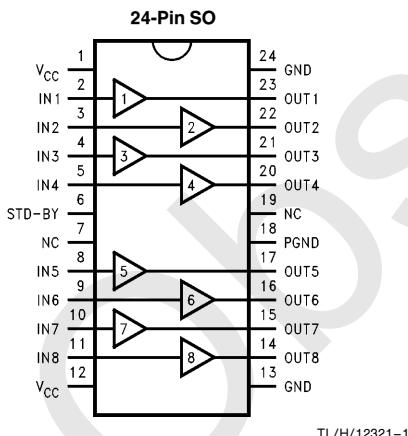
LMC6008 8 Channel Buffer

General Description

The LMC6008 octal buffer is designed specifically to buffer the multi-level voltages going to the inputs of the integrated circuits. The LMC6008 AC characteristics, including settling time, are specified for a capacitive load of 0.1 μ F for this reason.

The LMC6008 contains 4 high-speed buffers and 4 low-power buffers. The high-speed buffers can provide an output current of at least 250 mA (minimum), and the low-power buffers can provide at least 150 mA (minimum). By including the 2 types of buffers, the LMC6008 is able to provide this function while consuming a supply current of only 6.5 mA (maximum). The buffers are a rail-to-rail design, which typically swing to within 30 mV of either supply.

The LMC6008 also contains a standby function which puts the buffer into a high-impedance mode. The supply current in the standby mode is a low 500 μ A max. Also, a thermal limit circuit is included to protect the device from overload conditions.


Features

■ High Output Current:	250 mA min
High Speed Buffers	150 mA min
Low Power Buffers	
■ Slew Rate:	
High Speed Buffers	1.7 V/ μ s
Low Power Buffers	0.85V/ μ s
■ Settling Time, $C_L = 0.1 \mu$ F	16 μ s max
■ Wide Input/Output Range	0.1V to V _{CC} – 0.1V min
■ Supply Voltage Range	5V to 16V
■ Supply Current	6.5 mA max
■ Standby Mode Current	500 μ A

Applications

- AMLCD voltage buffering
- Multi-voltage buffering

Connection Diagram

Top View

Note: Buffers 1, 3, 5 and 7 are High Speed and Buffers 2, 4, 6 and 8 are Low Speed.

Ordering Information

Package	Temperature Range -40°C to +85°C	NSC Drawing	Transport Media
24-Pin	LMC6008IM	M24B	Rail
Surface Mount	LMC6008IMX	M24B	Tape & Reel

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

ESD Tolerance (Note 2)	2000V
Voltage at Input Pin	$V^+ + 0.4V$, $V^- - 0.4V$
Voltage at Output Pin	$V^+ + 0.4V$, $V^- - 0.4V$
Supply Voltage ($V^+ - V^-$)	16V
Lead Temperature (soldering, 10 sec.)	260°C
Storage Temperature Range	-55°C to +150°C
Junction Temperature (Note 4)	150°C
Power Dissipation (Note 4)	Internally Limited

Operating Ratings (Note 1)

Supply Voltage	$4.5V \leq V^+ \leq 16V$
Temperature Range	-20°C to +100°C

Thermal Resistance (θ_{JA})
M Package, 24-Pin Surface Mount 50°C/W

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^\circ C$, $V_{CC} = 14.5V$ and $R_L = 0$.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6008 Limit (Note 6)	Units
V_{OS}	Input Offset Voltage	$R_S = 10 k\Omega$		25	mV max
A_V	$V_O = 10 V_{PP}$			0.985	V/V
I_B	Input Bias Current			300	nA max
I_{LP}	Peak Load Current	Hi Speed Buffers		-250	mA max
		$V_O = 13 V_{PP}$		+250	mA min
I_{LP}	Peak Load Current	Lo Speed Buffers		-150	mA max
		$V_O = 13 V_{PP}$		+150	mA min
V_{ERR}	Output Voltage Difference (Note 9)		35		mV max
V_{IH}	Standby Logic High Voltage			3.30	V min
V_{IL}	$I_{STANDBY}$ Logic Low Voltage			1.80	V max
I_{IH}	Standby High Input Current			1.0	μA max
I_{IL}	Standby Low Input Current			1.0	μA max
I_O (STD-BY)	Output Leakage Current	$V_{STD-BY} = \text{High}$		5	μA max
I_{CC}	Supply Current	$V_{IL} = \text{Low}$, $V_{IN} = 7.25V$		6.5	mA max
I_{STD-BY}	Standby Current	$V_{STD-BY} = \text{High}$		500	μA max
PSRR	Power Supply Rejection Ratio	$5V < V_{CC} < 14.5V$		55	dB min
V_O	Voltage Output Swing			0.1	V min
				$V_{CC} - 0.1$	V max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^\circ\text{C}$, $V_{CC} = 14.5\text{V}$ and $R_L = 0\Omega$.

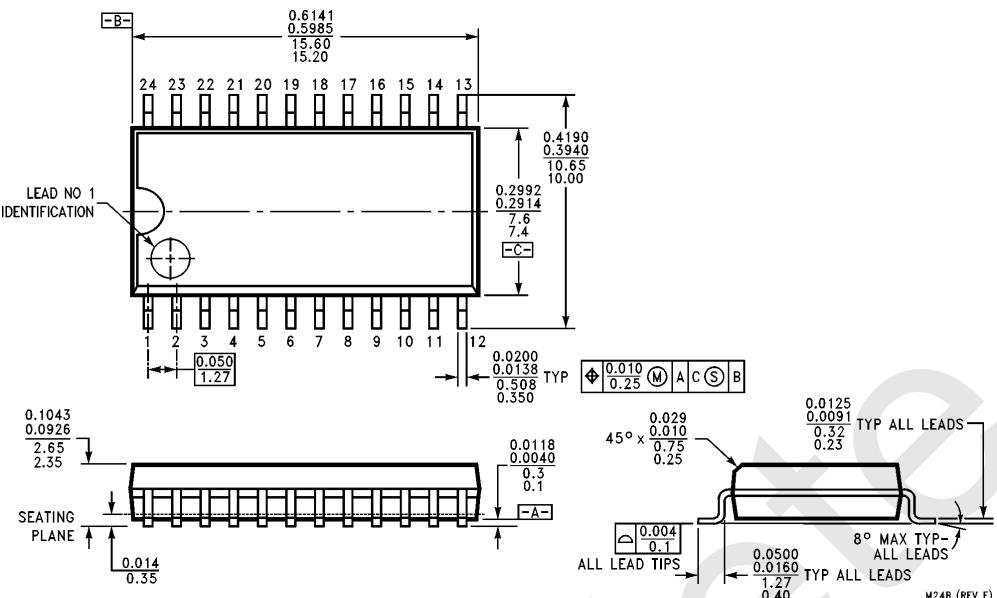
Symbol	Parameter	Conditions	Typ (Note 5)	LMC6008 Limit (Note 6)	Units
SR	Slew Rate	Buffers 1, 3, 5, 7 (Note 3)		1.70	$\text{V}/\mu\text{s}$ min
		Buffers 2, 4, 6, 8 (Note 3)		0.85	$\text{V}/\mu\text{s}$ min
t_S	Settling Time	(Notes 3, 7)		16	μs max
t_{ON}	Standby Response Time ON			10	μs max
t_{OFF}	Standby Response Time OFF			10	μs max
PBW	Power Bandwidth	$V_O = 10\text{ V}_{\text{pp}}$ for Hi-Speed $V_O = 5\text{ V}_{\text{pp}}$ for Lo-Speed (Note 3)		45	KHz min
C_L	Load Capacitance			0.1	μF max

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model, $1.5\text{ k}\Omega$ in series with 100 pF .

Note 3: The Load is a series connection of a $0.1\text{ }\mu\text{F}$ capacitor and a 1Ω resistor.

Note 4: The maximum power dissipation is a function of $T_{J(\text{max})}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(\text{max})} - T_A)/\theta_{JA}$, where the junction-to-ambient thermal resistance $\theta_{JA} = 50^\circ\text{C}/\text{W}$. If the maximum allowable power dissipation is exceeded, the thermal limit circuit will limit the die temperature to approximately 160°C . All numbers apply for packages soldered directly into a PC board.


Note 5: Typical Values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: The settling time is measured from the input transition to a point 50 mV of the final value, for both rising and falling transitions. The input swing is 0.5V to 13.5V for buffers 1, 3, 5, 7 and 3.75V to 10.25V for buffers 2, 4, 6, 8. Input rise time should be less than $1\text{ }\mu\text{s}$.

Note 8: High-Speed Buffers are 1, 3, 5, 7 and Low-Speed Buffers are 2, 4, 6, 8.

Note 9: Output Voltage Difference is the difference between the highest and lowest buffer output voltage when all buffer inputs are at identical voltages.

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead (3.00" Wide) Small Outline Molded Package (M)
 Order Number LMC6008IM or LMC6008IMX
 NS Package Number M24B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

 National Semiconductor Corporation
 1111 West Bardin Road
 Arlington, TX 76017
 Tel: (800) 737-7018
 Fax: (800) 737-9959
<http://www.national.com>

National Semiconductor Europe
 Fax: +49 (0) 180-530 85 86
 Email: europe.support@nsc.com
 Deutsch Tel: +49 (0) 180-530 85 85
 English Tel: +49 (0) 180-532 78 32
 Français Tel: +49 (0) 180-532 93 58
 Italiano Tel: +49 (0) 180-534 16 80

National Semiconductor Hong Kong Ltd.
 13th Floor, Straight Block,
 Ocean Centre, 5 Canton Rd.
 Tsimshatsui, Kowloon
 Hong Kong
 Tel: (852) 2737-1600
 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
 Tel: 81-043-299-2308
 Fax: 81-043-299-2408

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Mobile Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Transportation and Automotive	www.ti.com/automotive
Video and Imaging	www.ti.com/video

[TI E2E Community Home Page](#)

[e2e.ti.com](#)

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated