
CLC453

CLC453 Single Supply, Low-Power, High Output, Programmable Buffer

Literature Number: SNOS866

June 1999

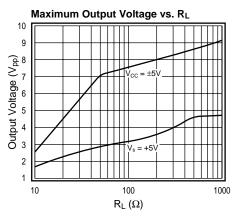
CLC453 Single Supply, Low-Power, High Output, Programmable Buffer

General Description

The CLC453 is a low cost, high speed (110MHz) buffer that features user-programmable gains of +2, +1, and -1V/V. It has a new output stage that delivers high output drive current (100mA), but consumes minimal quiescent supply current (3.0mA) from a single 5V supply. Its current feedback architecture, fabricated in an advanced complementary bipolar process, maintains consistent performance over a programmable range of gains and wide signal levels, and has a linear-phase response up to one half of the -3dB frequency. The CLC453's internal feedback network provides an excellent gain accuracy of 0.3%

The CLC453 offers superior dynamic performance with a 110MHz small-signal bandwidth, 370V/ μ s slew rate and 4.8ns rise/fall times (2V_{step}). The combination of the small SOT23-5 package, low quiescent power, high output current drive, and high-speed performance make the CLC453 well suited for many battery-powered personal communication/computing systems.

The ability to drive low-impedance, highly capacitive loads, makes the CLC453 ideal for single ended cable applications. It also drives low impedance loads with minimum distortion. The CLC453 will drive a 100 Ω load with only -72/-74dBc second/third harmonic distortion (A_v = +2, V_{out} = 2V_{pp}, f = 1MHz). With a 25 Ω load, and the same conditions, it produces only -65/-77dBc second/third harmonic distortion. It is also optimized for driving high currents into single-ended transformers and coils.


When driving the input of high-resolution A/D converters, the CLC453 provides excellent -65/-84dBc second/third harmonic distortion (A_v = +2, V_{out} = 2V_{pp}, f = 1MHz, R_L = 1k Ω) and fast settling time.

Features

- 100mA output current
- 3.0mA supply current
- 110MHz bandwidth (A_v = +2)
- -65/-84dBc HD2/HD3 (1MHz)
- 25ns settling to 0.05%
- 370V/µs slew rate
- Stable for capacitive loads up to 1000pF
- Single 5V to ±5V supplies
 - Available in Tiny SOT23-5 package

Applications

- Coaxial cable driver
- Twisted pair driver
- Transformer/Coil Driver
- High capacitive load driver
- Video line driver
- Portable/battery-powered applications
- A/D driver

PARAMETERS	CONDITIONS	TYP	MIN	MAX RATIN	IGS	UNITS	NOTES
Ambient Temperature	CLC453AJ	+25°C	+25°C	0 to 70°C	-40 to 85°C		
FREQUENCY DOMAIN RESPONS	E						
-3dB bandwidth	$V_0 = 0.5 V_{pp}$	110	80	75	70	MHz	
	$V_{0} = 2.0 V_{00}$	90	75	72	70	MHz	
-0.1dB bandwidth	$V_{o} = 0.5V_{pp}$ <200MHz, $V_{o} = 0.5V_{pp}$	25	22	22	18	MHz	
gain peaking	$<200MHz$, $V_0 = 0.5V_{pp}$	0	0.5	0.9	1.0	dB	
gain rolloff	<30 WiHZ, $V_0 = 0.5 V_{pp}$	0.2	0.5	0.6	0.6	dB	
linear phase deviation	<30 MHz, $V_{0}^{o} = 0.5 V_{pp}^{pp}$	0.1	2	3	3	deg	
TIME DOMAIN RESPONSE							
rise and fall time	2V step	4.8	6.4	6.8	7.3	ns	
settling time to 0.05%	1V step	25	_	-	-	ns	
overshoot	2V step	9	13	16	16	%	
slew rate	2V step	370	280	250	240	V/µs	
DISTORTION AND NOISE RESPO							
2 nd harmonic distortion	2V _{pp} , 1MHz	-72	-66	-64	-64	dBc	
	$2V_{pp}^{H}$, 1MHz; $R_{L} = 1k\Omega$	-65	-59	-57	-57	dBc	
	$2V_{pp}$, 1MHz; R _L = 1k Ω $2V_{pp}$, 5MHz $2V_{pp}$, 1MHz	-65	-56	-54	-54	dBc	
3 rd harmonic distortion	2V _{pp} , 1MHz	-74	-70	-68	-68	dBc	
	$2V_{pp}$, 1MHz; $R_{L} = 1k\Omega$	-84	-76	-74	-74	dBc	
	2V ^{''} pp, 5MHz	-60	-55	-53	-53	dBc	
equivalent input noise	>1MHz	2.8	3.5	3.8	3.8	nV/√Hz	
voltage (e _{ni}) non-inverting current (i _{bn})	>1MHz >1MHz	2.0 7.5	3.5 10	3.0 11	3.0 11	nv/vнz pA/√Hz	
inverting current (i _{bi})	>1MHz	10.5	14	15	15	pA/√Hz pA/√Hz	
	>11VII 12	10.0	17	15	15	p/v vi iz	
STATIC DC PERFORMANCE		10	20	25	25		<u>م</u>
input offset voltage		13 80	30	35	35	mV µV/℃	A
average drift input bias current (non-inverting)		5	18	22	24	μν/ C μΑ	А
average drift		30	10		24	nA/°C	
gain accuracy		±0.3	±1.5	±2.0	±2.0	%	A
internal resistors (R _f , R _a)		1000	±20%	±26%	±30%	Ω	
power supply rejection ratio	DC	48	43	43	43	dB	
common-mode rejection ratio	DC	51	48	46	46	dB	
supply current	$R_1 = \infty$	3.0	3.4	3.6	3.6	mA	A
MISCELLANEOUS PERFORMAN	-						
input resistance (non-inverting)		0.39	0.28	0.25	0.25	MΩ	
input capacitance (non-inverting)		1.5	2.3	2.3	2.3	pF	
input voltage range, High		4.2	4.1	4.0	4.0	V	
input voltage range, Low		0.8	0.9	1.0	1.0	V	
output voltage range, High	$R_1 = 100\Omega$	4.0	3.9	3.8	3.8	V	
output voltage range, Low	$R_{I} = 100\Omega$	1.0	1.1	1.2	1.2	V	
output voltage range, High	RL = ∞	4.1	4.0	4.0	3.9	V	
output voltage range, Low	R _L ^L = ∞	0.9	1.0	1.0	1.1	V	
output current		100	80	65	40	mA	В
output resistance, closed loop	DC	400	600	600	600	mΩ	

Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined from tested parameters.

Notes

A) J-level: spec is 100% tested at +25°C.

B) The short circuit current can exceed the maximum safe output current. 1) $V_s = V_{CC} - V_{EE}$

Reliability Information

Transistor Count MTBF (based on limited test data) 49

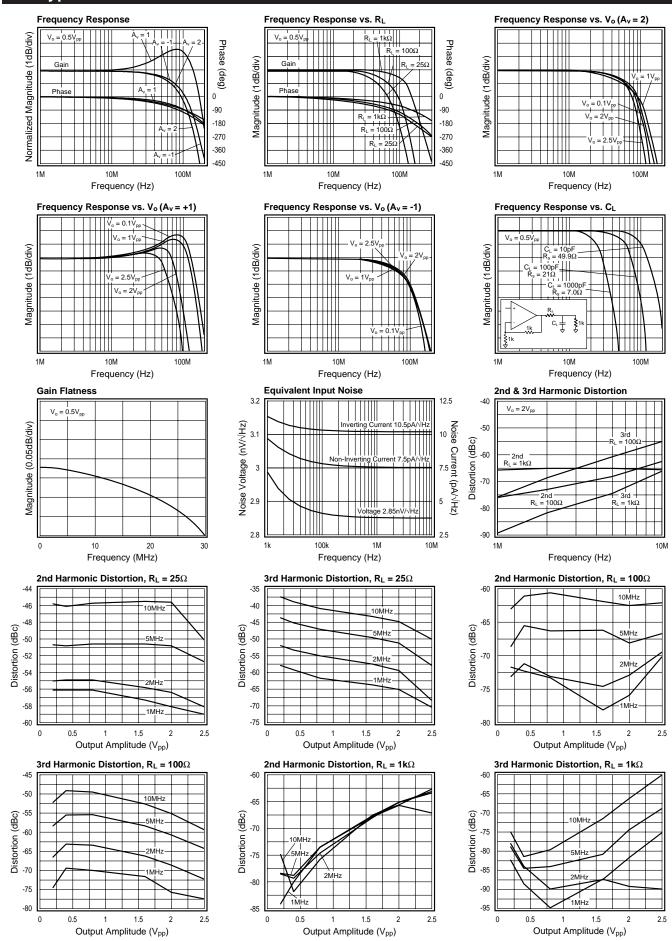
31Mhr

Absolute Maximum Ratings

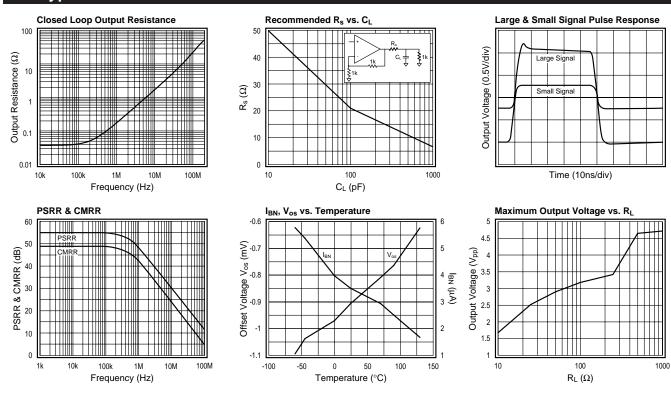
supply voltage (V _{CC} - V _{EE})	+14V
output current (see note C)	140mA
common-mode input voltage	V_{EE} to V_{CC}
maximum junction temperature	+150°C
storage temperature range	-65°C to +150°C
lead temperature (soldering 10 sec)	+300°C
ESD rating (human body model)	500V

PARAMETERS	CONDITIONS	TYP	GUAR	ANTEED MI	N/MAX	UNITS	NOTES
Ambient Temperature	CLC453AJ	+25°C	+25°C	0 to 70°C	-40 to 85°C		
FREQUENCY DOMAIN RESPONS	E						
-3dB bandwidth	$V_o = 1.0V_{pp}$ $V_o = 4.0V_{pp}$	130 70	105 55	95 52	90 50	MHz MHz	
-0.1dB bandwidth	$V_0 = 1.0 V_{pp}$	30	25	25	20	MHz	
gain peaking	$V_{o}^{o} = 1.0V_{pp}^{pp}$ <200MHz, $V_{o} = 1.0V_{pp}$	0	0.5	0.9	1.0	dB	
gain rolloff	$<30MHz, V_0 = 1.0V_{pp}$	0.2	0.7	0.8	0.8	dB	
linear phase deviation	<30 MHz, $V_0 = 1.0V_{pp}$	0.1	0.2	0.3	0.3	deg	
differential gain	NTSC, $R_L = 150\Omega$	0.3	-	-	-	%	
differential phase	NTSC, R _L =150 Ω	0.1	_	_	-	deg	
TIME DOMAIN RESPONSE							
rise and fall time	2V step	3.8	4.8	5.1	5.6	ns	
settling time to 0.05%	2V step	20	-	_	-	ns	
overshoot	2V step	6	10	13	13	%	
slew rate	2V step	460	340	315	300	V/μs	
DISTORTION AND NOISE RESPO							
2 nd harmonic distortion	2V _{pp} , 1MHz	-82	-74	-72	-72	dBc	
	$2V_{pp}^{pp}$, 1MHz; R _L = 1k Ω $2V_{pp}^{p}$, 5MHz	-69	-63	-61	-61	dBc	
	2V _{pp} , 5MHz	-65	-59	-57	-57	dBc	
3 rd harmonic distortion	2V _{pp} , 1MHz	-73	-69	-67	-67	dBc	
	$2V_{pp}^{pp}$, 1MHz; R _L = 1k Ω	-90	-80	-78	-78	dBc	
	2V ^{r1} , 5MHz	-60	-56	-54	-54	dBc	
equivalent input noise voltage (e _{ni})	>1MHz	2.8	3.5	3.8	3.8	nV/√Hz	
non-inverting current (i _{bn})	>1MHz	7.5	10	11	11	pA/√Hz	
inverting current (i _{bi})	>1MHz	10.5	14	15	15	pA/√Hz	
STATIC DC PERFORMANCE						p. t	
output offset voltage		7	30	35	35	mV	
average drift		80			- 55	μV/°C	
input bias current (non-inverting)		3	18	23	25	μν/Ο	
average drift		40	-			nĂ/°C	
gain accuracy		±0.3	±1.5	±2.0	±2.0	%	
internal resistors (R _f , R _g)		1000	±20%	±26%	±30%	Ω	
power supply rejection ratio	DC	48	45	43	43	dB	
common-mode rejection ratio	DC	53	50	48	48	dB	
supply current	R _L =∞	3.2	3.8	4.0	4.0	mA	
MISCELLANEOUS PERFORMAN	CE						
input resistance (non-inverting)	-	0.52	0.35	0.30	0.30	MΩ	
input capacitance (non-inverting)		1.2	1.8	1.8	1.8	pF	
common-mode input range		±4.2	±4.1	±4.1	±4.0	'v	
output voltage range	$R_L = 100\Omega$	±3.8	±3.6	±3.6	±3.5	V	
output voltage range	RL = ∞	±4.0	±3.8	±3.8	±3.7	V	
output current	-	130	100	80	50	mA	В
output resistance, closed loop	DC	400	600	600	600	mΩ	

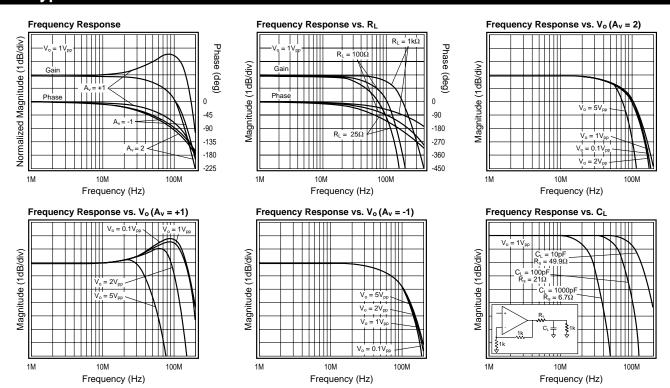
Notes


B) The short circuit current can exceed the maximum safe output current.

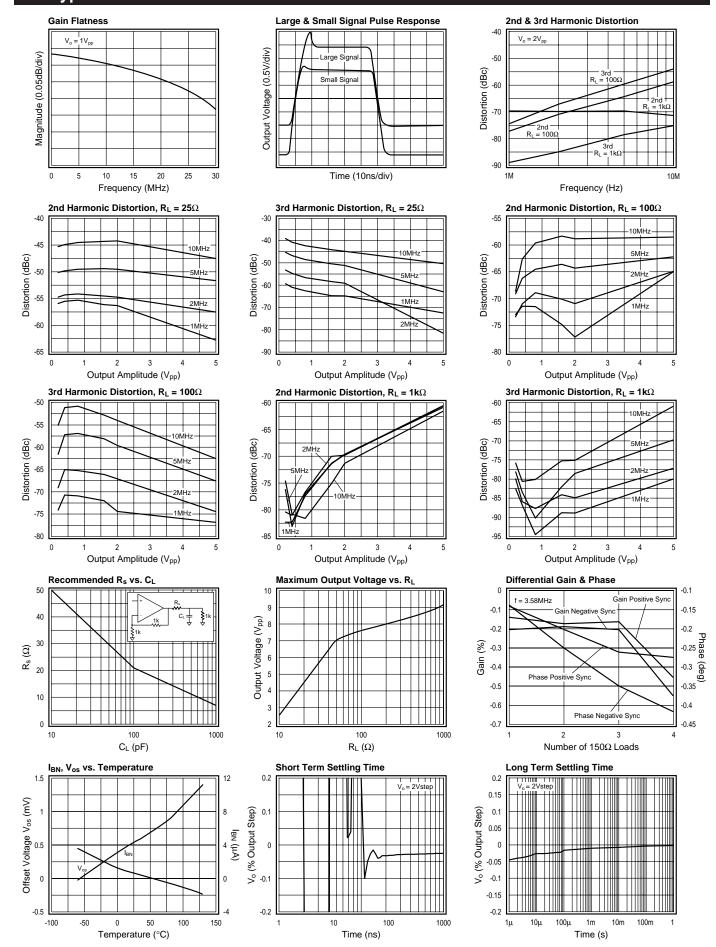
Package Thermal Resistance				
Package	θ _{JC}	θ _{JA}		
Plastic (AJP) Surface Mount (AJE) Surface Mount (AJM5) Dice (ALC)	115°C/W 130°C/W 140°C/W 25°C/W	125°C/W 150°C/W 210°C/W –		


Ordering Information

Model	Temperature Range	Description	
CLC453AJP	-40°C to +85°C	8-pin PDIP	
CLC453AJE	-40°C to +85°C	8-pin SOIC	
CLC453AJM5	-40°C to +85°C	5-pin SOT	
CLC453ALC	-40°C to +85°C	dice	


+5V Typical Performance ($A_v = +2$, $R_L = 100\Omega$, $V_s = +5V^1$, $V_{cm} = V_{EE} + (V_s/2)$, R_L tied to V_{cm} , unless specified)

+5V Typical Performance ($A_v = +2$, $R_L = 100\Omega$, $V_s = +5V^1$, $V_{cm} = V_{EE} + (V_s/2)$, R_L tied to V_{cm} , unless specified)



\pm 5V Typical Performance (A_v = +2, R_L = 100 Ω , V_{CC} = \pm 5V, unless specified)

http://www.national.com

$\pm 5V$ Typical Performance (A_v = +2, R_L = 100 Ω , V_{CC} = \pm 5V, unless specified)

CLC453 Operation

The CLC453 is a current feedback buffer built in an advanced complementary bipolar process. The CLC453 operates from a single 5V supply or dual \pm 5V supplies. Operating from a single 5V supply, the CLC453 has the following features:

- Gains of +1, -1, and 2V/V are achievable without external resistors
- Provides 100mA of output current while consuming only 15mW of power
- Offers low -65/-84dBc 2nd and 3rd harmonic distortion
- Provides BW > 80MHz and 1MHz distortion < -70dBc at V_o = 2V_{pp}

The CLC453 performance is further enhanced in $\pm 5V$ supply applications as indicated in the $\pm 5V$ *Electrical Characteristics* table and $\pm 5V$ *Typical Performance* plots.

If gains other than +1, -1, or +2V/V are required, then the CLC452 can be used. The CLC452 is a current feedback amplifier with near identical performance and allows for external feedback and gain setting resistors.

Current Feedback Amplifiers

Some of the key features of current feedback technology are:

- Independence of AC bandwidth and voltage gain
- Inherently stable at unity gain
- Adjustable frequency response with feedback resistor
- High slew rate
- Fast settling

Current feedback operation can be described using a simple equation. The voltage gain for a non-inverting or inverting current feedback amplifier is approximated by Equation 1.

$$\frac{V_{o}}{V_{in}} = \frac{A_{v}}{1 + \frac{R_{f}}{Z(j\omega)}}$$
 Equation 1

where:

- A_v is the closed loop DC voltage gain
- R_f is the feedback resistor
- Z(jω) is the CLC453's open loop transimpedance gain

$$\frac{Z(j\omega)}{R_f}$$
 is the loop gain

The denominator of Equation 1 is approximately equal to 1 at low frequencies. Near the -3dB corner frequency, the interaction between R_f and $Z(j\omega)$ dominates the circuit performance. The value of the feedback resistor has a large affect on the circuits performance. Increasing R_f has the following affects:

- Decreases loop gain
- Decreases bandwidth
- Reduces gain peaking
- Lowers pulse response overshoot
- Affects frequency response phase linearity

CLC453 Design Information

Closed Loop Gain Selection

The CLC453 is a current feedback op amp with $R_f = R_g = 1k\Omega$ on chip (in the package). Select from three closed loop gains without using any external gain or feedback resistors. Implement gains of +2, +1, and -1V/V by connecting pins 2 and 3 as described in the chart below.

Gain	Input Cor	nnections
A _v	Non-Inverting (pin3)	Inverting (pin2)
-1V/V	ground	input signal
+1V/V	input signal	NC (open)
+2V/V	input signal	ground

The gain accuracy of the CLC453 is excellent and stable over temperature change. The internal gain setting resistors, R_f and R_g are diffused silicon resistors with a process variation of \pm 20% and a temperature coefficient of ~ 2000ppm/°C. Although their absolute values change with processing and temperature, their ratio (R_f/R_g) remains constant. If an external resistor is used in series with R_g , gain accuracy over temperature will suffer.

Single Supply Operation (V_{CC} = +5V, V_{EE} = GND)

The specifications given in the +5V Electrical Characteristics table for single supply operation are measured with a common mode voltage (V_{cm}) of 2.5V. V_{cm} is the voltage around which the inputs are applied and the output voltages are specified.

Operating from a single +5V supply, the Common Mode Input Range (CMIR) of the CLC453 is typically +0.8V to +4.2V. The typical output range with R_L =100 Ω is +1.0V to +4.0V.

For single supply DC coupled operation, keep input signal levels above 0.8V DC. For input signals that drop below 0.8V DC, AC coupling and level shifting the signal are recommended. The non-inverting and inverting configurations for both input conditions are illustrated in the following 2 sections.

DC Coupled Single Supply Operation

Figures 1, 2, and 3 on the following page, show the recommended configurations for input signals that remain above 0.8V DC.

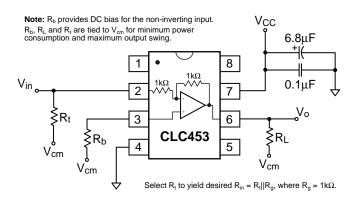


Figure 1: DC Coupled, $A_v = -1V/V$ Configuration

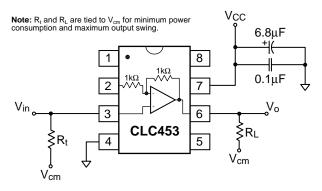


Figure 2: DC Coupled, $A_v = +1V/V$ Configuration

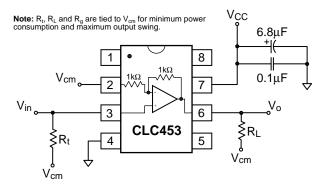


Figure 3: DC Coupled, $A_v = +2V/V$ Configuration

AC Coupled Single Supply Operation

Figures 4, 5, and 6 show possible non-inverting and inverting configurations for input signals that go below 0.8V DC.

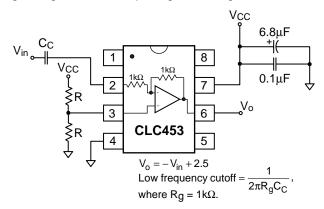
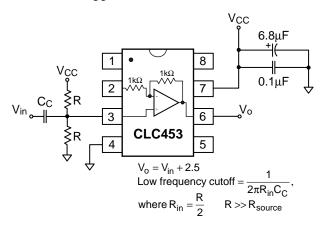
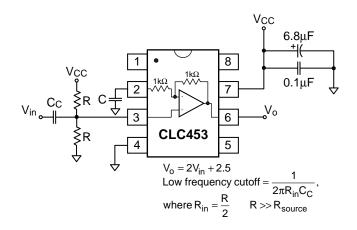
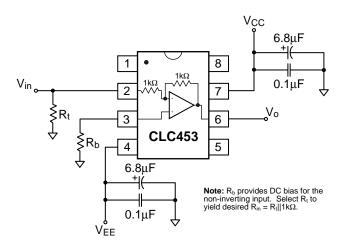


Figure 4: AC Coupled, $A_v = -1V/V$ Configuration

The input is AC coupled to prevent the need for level shifting the input signal at the source. The resistive voltage divider biases the non-inverting input to $V_{CC} \div 2 = 2.5V$ (For $V_{CC} = +5V$).


Figure 5: AC Coupled, $A_v = +1V/V$ Configuration

Dual Supply Operation

The CLC453 operates on dual supplies as well as single supplies. The non-inverting and inverting configurations are shown in Figures 7, 8 and 9.

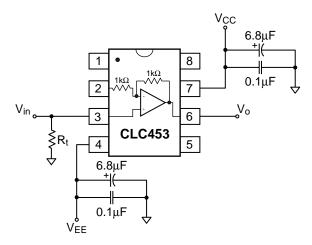


Figure 8: Dual Supply, $A_v = +1V/V$ Configuration

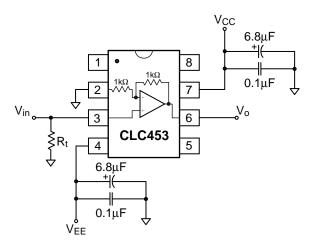


Figure 9: Dual Supply, $A_v = +2V/V$ Configuration

Bandwidth vs. Output Amplitude

The bandwidth of the CLC453 is at a maximum for output voltages near 1Vpp. The bandwidth decreases for smaller and larger output amplitudes. Refer to the Frequency Response vs. Vo plots.

Load Termination

The CLC453 can source and sink near equal amounts of current. For optimum performance, the load should be tied to V_{cm}.

Driving Cables and Capacitive Loads

When driving cables, double termination is used to prevent reflections. For capacitive load applications, a small series resistor at the output of the CLC453 will improve stability and settling performance. The Frequency Response vs. C_L and Recommended R_s vs. C₁ plots, in the typical performance section, give the recommended series resistance value for optimum flatness at various capacitive loads.

Transmission Line Matching

One method for matching the characteristic impedance (Z_{0}) of a transmission line or cable is to place the appropriate resistor at the input or output of the amplifier.

Figure 10 shows typical inverting and non-inverting circuit configurations for matching transmission lines.

Non-inverting gain applications:

- Connect pin 2 as indicated in the table in the Closed Loop Gain Selection section.
- Make R₁, R₂, R₆, and R₇ equal to Z₀.
- Use R₃ to isolate the amplifier from reactive loading caused by the transmission line, or by parasitics.

Inverting gain applications:

- Connect R₃ directly to ground.
- Make the resistors R₄, R₆, and R₇ equal to Z₀.
- Make $R_5 \parallel R_a = Z_o$.

The input and output matching resistors attenuate the signal by a factor of 2, therefore additional gain is needed. Use C₆ to match the output transmission line over a greater frequency range. C₆ compensates for the increase of the amplifier's output impedance with frequency.

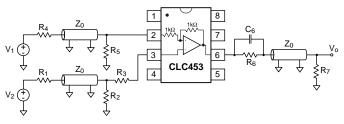


Figure 10: Transmission Line Matching

Power Dissipation

Follow these steps to determine the power consumption of the CLC453:

- 1. Calculate the quiescent (no-load) power:
- $P_{amp} = I_{CC} (V_{CC} V_{EE})$ 2. Calculate the RMS power at the output stage: $P_o = (V_{CC} - V_{load}) (I_{load})$, where V_{load} and I_{load} are the RMS voltage and current across the external load.
- 3. Calculate the total RMS power:

$$P_t = P_{amp} + P_o$$

The maximum power that the DIP, SOIC, and SOT packages can dissipate at a given temperature is illustrated in Figure 11. The power derating curve for any CLC453 package can be derived by utilizing the following equation:

$$\frac{(175^\circ - T_{amb})}{\theta_{10}}$$

 T_{amb} = Ambient temperature (°C)

 θ_{JA} = Thermal resistance, from junction to ambient,

where

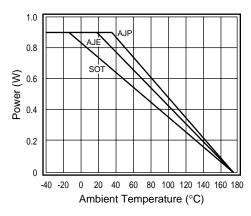


Figure 11: Power Derating Curve

Layout Considerations

A proper printed circuit layout is essential for achieving high frequency performance. Comlinear provides evaluation boards for the CLC453 (CLC730013-DIP, CLC730027-SOIC, CLC730068-SOT) and suggests their use as a guide for high frequency layout and as an aid for device testing and characterization.

General layout and supply bypassing play major roles in high frequency performance. Follow the steps below as a basis for high frequency layout:

- Include 6.8µF tantalum and 0.1µF ceramic capacitors on both supplies.
- Place the 6.8µF capacitors within 0.75 inches of the power pins.
- Place the 0.1µF capacitors less than 0.1 inches from the power pins.
- Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitance.
- Minimize all trace lengths to reduce series inductances.
- Use flush-mount printed circuit board pins for prototyping, never use high profile DIP sockets.

Evaluation Board Information

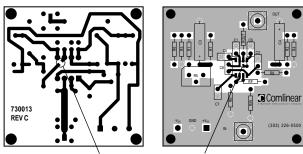
Data sheets are available for the CLC730013/ CLC730027 and CLC730068 evaluation boards. The evaluation board data sheets provide:

- Evaluation board schematics
- Evaluation board layouts
- General information about the boards

The CLC730013/CLC730027 data sheet also contains tables of recommended components to evaluate several of National's high speed amplifiers. This table for the CLC453 is illustrated below. Refer to the evaluation board data sheet for schematics and further information.

Components Needed to Evaluate the CLC453 on the Evaluation Board:

R_{in}, R_{out} - Typically 50Ω (Refer to the Basic) Operation section of the evaluation board data sheet for details)


- R_t Optional resistor for inverting gain configurations (Select Rt to yield desired input impedance $= R_q \parallel R_t$
- C₁, Č₂ 0.1µF ceramic capacitors
- \blacksquare C₃, C₄ 6.8µF tantalum capacitors

Components not used:

The evaluation boards are designed to accommodate dual supplies. The boards can be modified to provide single supply operation. For best performance; 1) do not connect the unused supply, 2) ground the unused supply pin.

Special Evaluation Board Considerations for the CLC453

To optimize off-isolation of the CLC453, cut the R_f trace on both the CLC730013 and the CLC730027 evaluation boards. This cut minimizes capacitive feedthrough between the input and the output. Figure 12 shows where to cut both evaluation boards for improved off-isolation.

Cut trace here

Cut trace here

Figure 12: Evaluation Board Changes

SPICE Models

SPICE models provide a means to evaluate amplifier designs. Free SPICE models are available for National's monolithic amplifiers that:

- Support Berkeley SPICE 2G and its many derivatives
- Reproduce typical DC, AC, Transient, and Noise performance
- Support room temperature simulations

The *readme* file that accompanies the diskette lists released models, and provides a list of modeled parameters. The application note OA-18, Simulation SPICE Models for National's Op Amps, contains schematics and a reproduction of the readme file.

Application Circuits

Single Supply Cable Driver

The typical application shown on the front page shows the CLC453 driving 10m of 75Ω coaxial cable. The CLC453 is set for a gain of +2V/V to compensate for the divide-by-two voltage drop at Vo.

Twisted Pair Driver

The high output current and low distortion, of the CLC453, make it well suited for driving transformers. Figure 13 illustrates a typical twisted pair driver utilizing the CLC453 and a transformer. The transformer provides the signal and its inversion for the twisted pair.

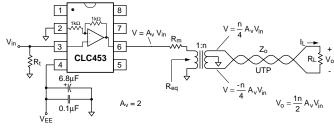


Figure 13: Twisted Pair Driver

To match the line's characteristic impedance (Z_o) set:

$$R_{L} = Z_{o}$$
$$R_{m} = R_{eq}$$

Where $\rm R_{eq}$ is the transformed value of the load impedance, (RL), and is approximated by:

$$R_{eq} = \frac{R_L}{n^2}$$

Select the transformer so that it loads the line with a value close to Z_0 , over the desired frequency range. The output impedance, R_0 , of the CLC453 varies with frequency and can also affect the return loss. The return loss, shown below, takes into account an ideal transformer and the value of R_0 .

Return Loss(dB)
$$\approx -20\log_{10}\left| n^2 \cdot \frac{R_o}{Z_o} \right|$$

The load current (I_L) and voltage (V_o) are related to the CLC453's maximum output voltage and current by:

$$\left| V_{o} \right| \le n \cdot V_{max}$$

 $\left| I_{L} \right| \le \frac{I_{max}}{n}$

From the above current relationship, it is obvious that an amplifier with high output drive capability is required.

Customer Design Applications Support

National Semiconductor is committed to design excellence. For sales, literature and technical support, call the National Semiconductor Customer Response Group at **1-800-272-9959** or fax **1-800-737-7018**.

Life Support Policy

National's products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of National Semiconductor Corporation. As used herein:

- 1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

Europe Fax: (+49) 0-180-530 85 86 E-mail: europe.support.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Francais Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor

National Semiconductor Hong Kong Ltd. 2501 Miramar Tower 1-23 Kimberley Road Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960
 National Semiconductor

 Japan Ltd.

 Tel: 81-043-299-2309

 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		a O a Al a a m	

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated