LMH6628EP

SNOSAA5D-MAY 2004-REVISED APRIL 2013

www.ti.com

LMH6628EP Enhanced Plastic Dual Wideband, Low Noise, Voltage Feedback Op Amp

Check for Samples: LMH6628EP

FEATURES

Wide Unity Gain Bandwidth: 300MHz

Low Noise: 2nV/√HZ

Low Distortion: -65/-74dBc (10MHz)

Settling Time: 12ns to 0.1%

Wide Supply Voltage Range: ±2.5V to ±6V

• High Output Current: ±85mA

Improved Replacement for CLC428

APPLICATIONS

High Speed Dual Op Amp

Low Noise Integrators

Selected Military Applications

Selected Avionics Applications

DESCRIPTION

The Texas Instruments LMH6628EP is a high speed dual op amp that offers a traditional voltage feedback topology featuring unity gain stability and slew enhanced circuitry. The LMH6628EP's low noise and very low harmonic distortion combine to form a wide dynamic range op amp that operates from a single (5V to 12V) or dual (±5V) power supply.

Each of the LMH6628EP's closely matched channels provides a 300MHz unity gain bandwidth and low input voltage noise density (2nV/√HZ). Low 2nd/3rd harmonic distortion (−65/−74dBc at 10MHz) make the LMH6628EP a perfect wide dynamic range amplifier for matched I/Q channels.

With its fast and accurate settling (12ns to 0.1%), the LMH6628EP is also an excellent choice for wide dynamic range, anti-aliasing filters to buffer the inputs of hi resolution analog-to-digital converters. Combining the LMH6628EP's two tightly matched amplifiers in a single 8-pin SOIC package reduces cost and board space for many composite amplifier applications such as active filters, differential line drivers/receivers, fast peak detectors and instrumentation amplifiers.

The LMH6628EP is fabricated using Texas Instruments' VIP10 complimentary bipolar process.

To reduce design times and assist in board layout, the LMH6628EP is supported by an evaluation board (CLC730036).

ENHANCED PLASTIC

- Extended Temperature Performance of −40°C to +85°C
- Baseline Control Single Fab & Assembly Site
- Process Change Notification (PCN)
- Qualification & Reliability Data
- · Solder (PbSn) Lead Finish is standard
- Enhanced Diminishing Manufacturing Sources (DMS) Support

Connection Diagram

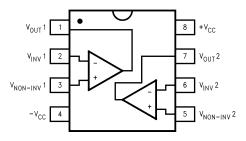


Figure 1. 8-Pin SOIC Top View

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

ESD Tolerance ⁽³⁾	Human Body Model	2kV
	Machine Model	200V
Supply Voltage		13.5
Short Circuit Current		See ⁽⁴⁾
Common-Mode Input Voltage		V+ - V ⁻
Differential Input Voltage		V+ - V ⁻
Maximum Junction Temperature		+150°C
Storage Temperature Range		−65°C to +150°C
Lead Temperature (soldering 10 sec)		+300°C

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications, see the Electrical Characteristics tables.
- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
- (3) Human body model, $1.5k\Omega$ in series with 100pF. Machine model, 0Ω In series with 200pF.
- (4) Output is short circuit protected to ground, however maximum reliability is obtained if output current does not exceed 160mA.

Operating Ratings⁽¹⁾

Thermal Resistance ⁽²⁾		(θ _{JC})	65°C/W
	SOIC Package	(θ_{JA})	145°C/W
Temperature Range			-40°C to +85°C
Nominal Supply Voltage			±2.5V to ±6V

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications, see the Electrical Characteristics tables.
- (2) The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)}^T T_A) / \theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.

Electrical Characteristics(1)

 V_{CC} = ±5V, A_V = +2V/V, R_F = 100 Ω , R_G = 100 Ω , R_L = 100 Ω ; unless otherwise specified. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency	Domain Response		-1	1	i.	-
GB	Gain Bandwidth Product	$V_O < 0.5V_{PP}$		200		MHz
SSBW	-3dB Bandwidth, A _V = +1	$V_O < 0.5V_{PP}$	180	300		MHz
SSBW	-3dB Bandwidth, A _V = +2	$V_O < 0.5V_{PP}$		100		MHz
GFL	Gain Flatness	V _O < 0.5V _{PP}				
GFP	Peaking	DC to 200MHz		0.0		dB
GFR	Rolloff	DC to 20MHz		.1		dB
LPD	Linear Phase Deviation	DC to 20MHz		.1		deg
Time Doma	in Response	•	·	•	·	•
TR	Rise and Fall Time	1V Step		4		ns
TS	Settling Time	2V Step to 0.1%		12		ns
OS	Overshoot	1V Step		1		%
SR	Slew Rate	4V Step	300	550		V/µs
Distortion A	And Noise Response		•	•	*	+

⁽¹⁾ Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that T_J = T_A. No specification of parametric performance is indicated in the electrical tables under conditions of internal self heating where T_J > T_A. See Note 6 for information on temperature de-rating of this device." Min/Max ratings are based on product characterization and simulation. Individual parameters are tested as noted.

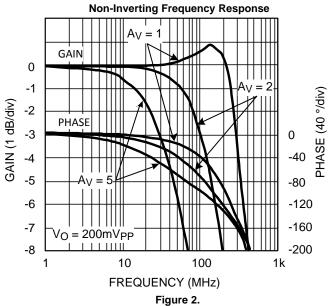
Submit Documentation Feedback

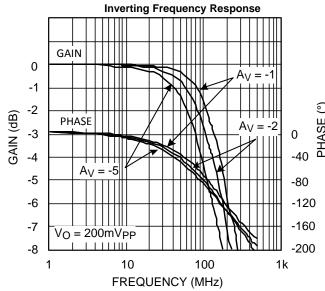
Copyright © 2004–2013, Texas Instruments Incorporated

SNOSAA5D -MAY 2004-REVISED APRIL 2013

Electrical Characteristics(1) (continued)

 V_{CC} = ±5V, A_V = +2V/V, R_F = 100 Ω , R_G = 100 Ω , R_L = 100 Ω ; unless otherwise specified. **Boldface** limits apply at the temperature extremes.


Symbol	Parameter	Conditions	Min	Тур	Max	Units
HD2	2nd Harmonic Distortion	1V _{PP} , 10MHz		- 65		dBc
HD3	3rd Harmonic Distortion	1V _{PP} , 10MHz		-74		dBc
	Equivalent Input Noise					
V_N	Voltage	1MHz to 100MHz		2		nV/√ Hz
I _N	Current	1MHz to 100MHz		2		pA/√Hz
XTLKA	Crosstalk	Input Referred, 10MHz		-62		dB
Static, DC F	Performance					
G _{OL}	Open-Loop Gain		56 53	63		dB
V _{IO}	Input Offset Voltage			±.5	±2 ±2.6	mV
DV _{IO}	Average Drift			5		μV/°C
I _{BN}	Input Bias Current			±.7	±20 ±30	μΑ
DI _{BN}	Average Drift			150		nA/°C
Ios	Input Offset Current			0.3	±6	μA
I _{OSD}	Average Drift			5		nA/°C
PSRR	Power Supply Rejection Ratio		60 46	70		dB
CMRR	Common-Mode Rejection Ratio		57 54	62		dB
I _{CC}	Supply Current	Per Channel, R _L = ∞	7.5 7.0	9	12 12.5	mA
Miscellaneo	us Performance					
R _{IN}	Input Resistance	Common-Mode		500		kΩ
		Differential-Mode		200		kΩ
C _{IN}	Input Capacitance	Common-Mode		1.5		pF
		Differential-Mode		1.5		pF
R _{OUT}	Output Resistance	Closed-Loop		.1		Ω
Vo	Output Voltage Range	R _L = ∞		±3.8		V
V _{OL}		$R_L = 100\Omega$	±3.2 ±3.1	±3.5		V
CMIR	Input Voltage Range	Common- Mode		±3.7		V
Io	Output Current		±50	±85		mA


Copyright © 2004–2013, Texas Instruments Incorporated

Typical Performance Characteristics

 $(T_A = +25^\circ, A_V = +2, V_{CC} = \pm 5V, R_f = 100\Omega, R_L = 100\Omega, unless specified)$

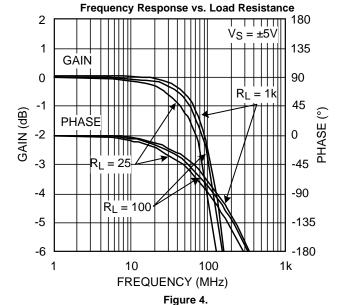


Figure 3.

Frequency Response vs. Output Amplitude

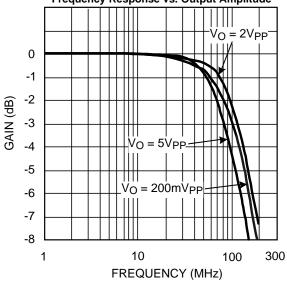
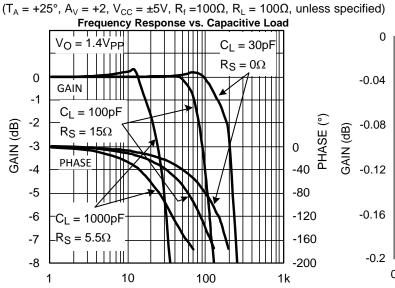



Figure 5.

NSTRUMENTS

Typical Performance Characteristics (continued)

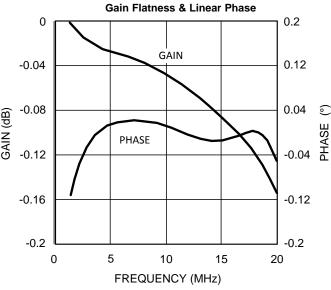
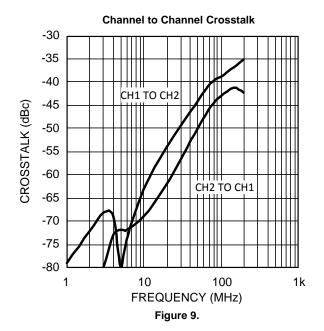



Figure 7.

Channel Matching CHANNEL 2 GAIN 0 -1 PHASE (20°/div) GAIN (1 dB/div) -2 -3 PHASE -4 -5 -40 CHANNEL 2 -60 -6 -7 -80 $V_O = 1.2V_{PP}$ -100 -8 10 100 1k FREQUENCY (MHz)

Figure 8.

FREQUENCY (MHz) Figure 6.

Copyright © 2004–2013, Texas Instruments Incorporated

SNOSAA5D-MAY 2004-REVISED APRIL 2013

Typical Performance Characteristics (continued)

 $(T_A$ = +25°, A_V = +2, V_{CC} = ±5V, R_f =100 Ω , R_L = 100 Ω , unless specified)

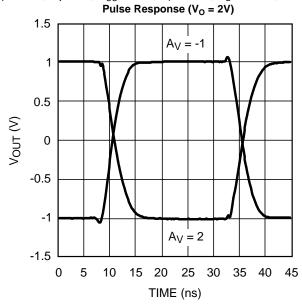
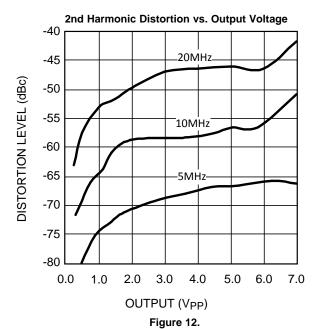



Figure 10.

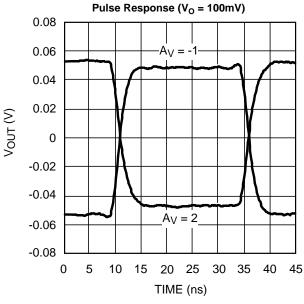
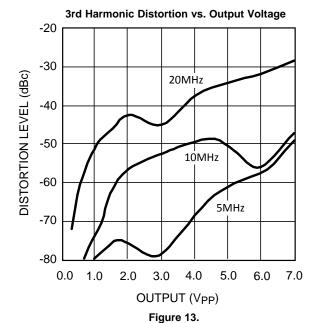



Figure 11.

Submit Documentation Feedback

Typical Performance Characteristics (continued)

 $(T_A = +25^\circ, A_V = +2, V_{CC} = \pm 5V, R_f = 100\Omega, R_L = 100\Omega, unless specified)$

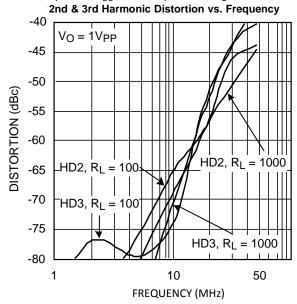
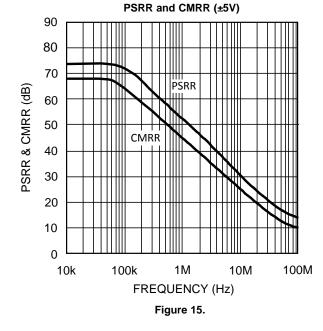
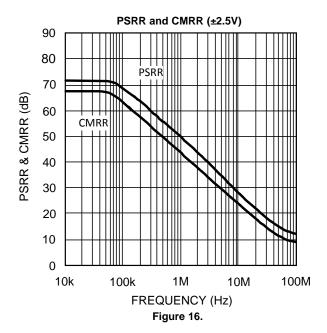
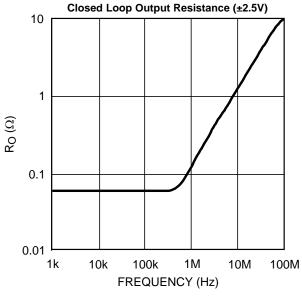
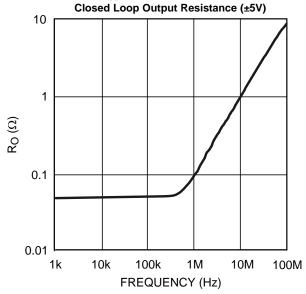
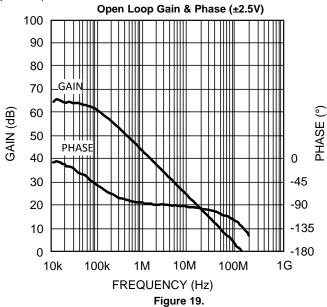
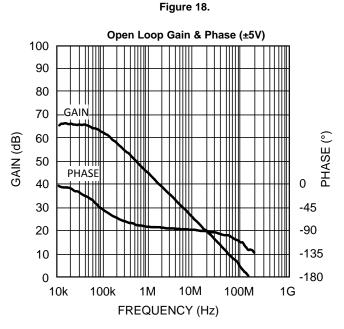




Figure 14.

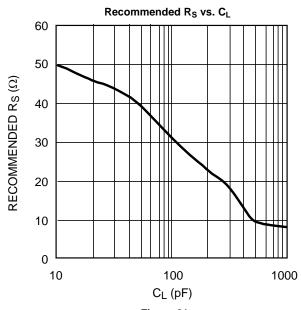
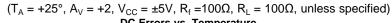
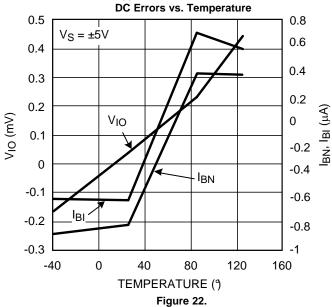



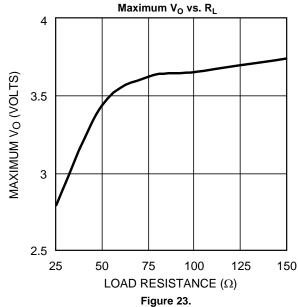

Figure 17.

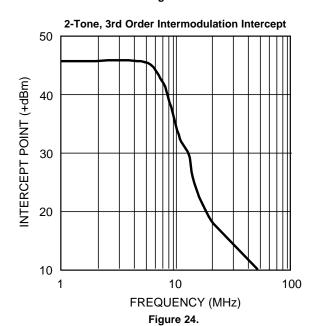


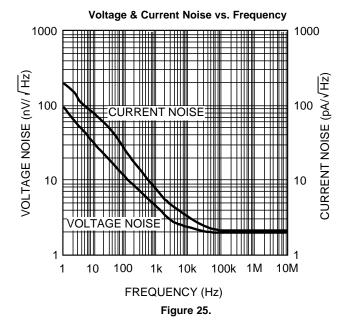
Typical Performance Characteristics (continued)

 $(T_A = +25^\circ, A_V = +2, V_{CC} = \pm 5V, R_f = 100\Omega, R_L = 100\Omega, unless specified)$


Figure 20.


Figure 21.


Typical Performance Characteristics (continued)

SNOSAA5D-MAY 2004-REVISED APRIL 2013

Typical Performance Characteristics (continued)

(T_A = +25°, A_V = +2, V_{CC} = ±5V, R_f =100 Ω , R_L = 100 Ω , unless specified)

Settling Time vs. Accuracy

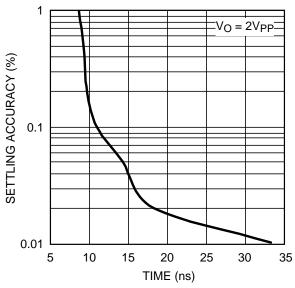


Figure 26.

SNOSAA5D -MAY 2004-REVISED APRIL 2013

APPLICATION SECTION

LOW NOISE DESIGN

Ultimate low noise performance from circuit designs using the LMH6628EP requires the proper selection of external resistors. By selecting appropriate low valued resistors for R_F and R_G, amplifier circuits using the LMH6628EP can achieve output noise that is approximately the equivalent voltage input noise of 2nV/√Hz multiplied by the desired gain (A_V).

DC BIAS CURRENTS AND OFFSET VOLTAGES

Cancellation of the output offset voltage due to input bias currents is possible with the LMH6628EP. This is done by making the resistance seen from the inverting and non-inverting inputs equal. Once done, the residual output offset voltage will be the input offset voltage (Vos) multiplied by the desired gain (Av). Texas Instruments Application Note OA-7 offers several solutions to further reduce the output offset.

OUTPUT AND SUPPLY CONSIDERATIONS

With ±5V supplies, the LMH6628EP is capable of a typical output swing of ±3.8V under a no-load condition. Additional output swing is possible with slightly higher supply voltages. For loads of less than 50Ω , the output swing will be limited by the LMH6628EP's output current capability, typically 85mA.

Output settling time when driving capacitive loads can be improved by the use of a series output resistor. See the plot labeled "R_S vs. C_I" in the Typical Performance section.

LAYOUT

Proper power supply bypassing is critical to insure good high frequency performance and low noise. De-coupling capacitors of 0.1µF should be placed as close as possible to the power supply pins. The use of surface mounted capacitors is recommended due to their low series inductance.

A good high frequency layout will keep power supply and ground traces away from the inverting input and output pins. Parasitic capacitance from these nodes to ground causes frequency response peaking and possible circuit oscillation. See OA-15 for more information. Texas Instruments suggests the 730036 (SOIC) dual op amp evaluation board as a guide for high frequency layout and as an aid in device evaluation.

ANALOG DELAY CIRCUIT (ALL-PASS NETWORK)

The circuit in Figure 27 implements an all-pass network using the LMH6628EP. A wide bandwidth buffer (LM7121) drives the circuit and provides a high input impedance for the source. As shown in Figure 28, the circuit provides a 13.1ns delay (with R = 40.2Ω , C = 47pF). R_F and R_G should be of equal and low value for parasitic insensitive operation.

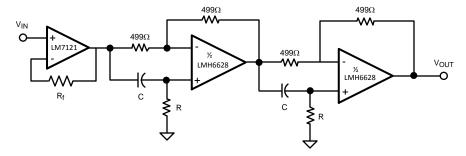


Figure 27.

Copyright © 2004-2013, Texas Instruments Incorporated Submit Documentation Feedback

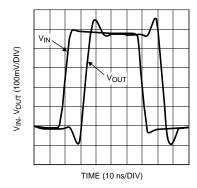


Figure 28. Delay Circuit Response to 0.5V Pulse

The circuit gain is +1 and the delay is determined by the following equations.

$$^{\tau}$$
delay = 2(2RC + T_d) (1)

$$T_d = \frac{1}{360} \frac{do}{df}$$
, (2)

where T_d is the delay of the op amp at $A_V = +1$.

The LMH6628EP provides a typical delay of 2.8ns at its -3dB point.

FULL DUPLEX DIGITAL OR ANALOG TRANSMISSION

Simultaneous transmission and reception of analog or digital signals over a single coaxial cable or twisted-pair line can reduce cabling requirements. The LMH6628EP's wide bandwidth and high common-mode rejection in a differential amplifier configuration allows full duplex transmission of video, telephone, control and audio signals.

In the circuit shown in Figure 29, one of the LMH6628EP's amps is used as a "driver" and the other as a difference "receiver" amplifier. The output impedance of the "driver" is essentially zero. The two R's are chosen to match the characteristic impedance of the transmission line. The "driver" op amp gain can be selected for unity or greater.

Receiver amplifier A_2 (B_2) is connected across R and forms differential amplifier for the signals transmitted by driver A_2 (B_2). If R_F equals R_G , receiver A_2 (B_1) will then reject the signals from driver A_1 (B_1) and pass the signals from driver B_1 (A_1).

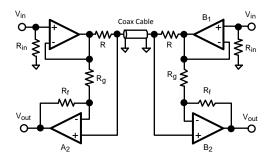


Figure 29. Example Circuit

The output of the receiver amplifier will be:

$$V_{\text{out}}_{A(B)} = \frac{1}{2} V_{\text{in}}_{A(B)} \left[1 - \frac{R_f}{R_g} \right] + \frac{1}{2} V_{\text{in}}_{B(A)} \left[1 + \frac{R_f}{R_g} \right]$$
(3)

Care must be given to layout and component placement to maintain a high frequency common-mode rejection. The plot of Figure 30 shows the simultaneous reception of signals transmitted at 1MHz and 10MHz.

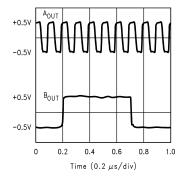


Figure 30. Simultaneous 1- and 10-MHz Signal Reception

POSITIVE PEAK DETECTOR

The LMH6628EP's dual amplifiers can be used to implement a unity-gain peak detector circuit as shown in Figure 31.

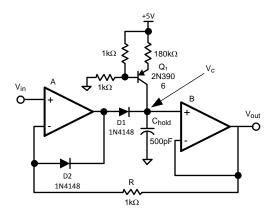


Figure 31. Unity-Gain Peak Detector Circuit

The acquisition speed of this circuit is limited by the dynamic resistance of the diode when charging C_{hold} . A plot of the circuit's performance is shown in Figure 32 with a 1MHz sinusoidal input.

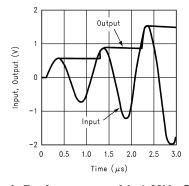


Figure 32. Circuit Performance with 1-MHz Sinusoidal Input

A current source, built around Q1, provides the necessary bias current for the second amplifier and prevents saturation when power is applied. The resistor, R, closes the loop while diode D2 prevents negative saturation when V_{IN} is less than V_{C} . A MOS-type switch (not shown) can be used to reset the capacitor's voltage.

The maximum speed of detection is limited by the delay of the op amps and the diodes. The use of Schottky diodes will provide faster response.

Copyright © 2004–2013, Texas Instruments Incorporated

ADJUSTABLE OR BANDPASS EQUALIZER

A "boost" equalizer can be made with the LMH6628EP by summing a bandpass response with the input signal, as shown in Figure 33.

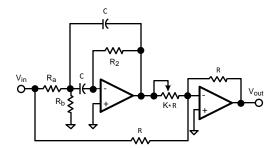


Figure 33. Boost Equalizer Sum

The overall transfer function is shown in Equation 4.

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \left[\frac{R_b}{K(R_a + R_b)}\right] \frac{s2Q\omega_o}{s^2 + s\frac{\omega_o}{Q} + \omega_o^2} - 1$$
(4)

To build a boost circuit, use the design Equation 5 and Equation 6.

$$\frac{R_2C}{2} = \frac{Q}{\omega_0} \tag{5}$$

2C
$$(R_a||R_b) = \frac{1}{Q_{\omega_0}}$$
 (6)

Select R_2 and C using Equation 5. Use reasonable values for high frequency circuits - R_2 between 10Ω and $5k\Omega$, C between 10pF and 2000pF. Use Equation 6 to determine the parallel combination of R_a and R_b . Select R_a and R_b by either the 10Ω to $5k\Omega$ criteria or by other requirements based on the impedance V_{in} is capable of driving. Finish the design by determining the value of K from Equation 7.

Peak Gain =
$$\frac{V_{\text{out}}}{V_{\text{in}}} (\omega_{\text{o}}) = \frac{R_2}{2KR_a} - 1$$
 (7)

Figure 34 shows an example of the response of the circuit of Figure 9, where f_o is 2.3MHz. The component values are as follows: R_a =2.1k Ω , R_b = 68.5 Ω , R_2 = 4.22k Ω , R = 500 Ω , KR = 50 Ω , C = 120pF.

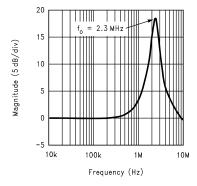


Figure 34. Example Response

LMH6628EP

www.ti.com SNOSAA5D -MAY 2004-REVISED APRIL 2013

REVISION HISTORY

Cł	hanges from Revision C (April 2013) to Revision D	Pag	е
•	Changed layout of National Data Sheet to TI format	1	4

Product Folder Links: LMH6628EP

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>