

Dual Precision, 17 MHz, Low Noise, CMOS Input Amplifier

Check for Samples: SM73307

FEATURES

- Unless Otherwise Noted, Typical Values at V_S = 5V.
- **Renewable Energy Grade**
- Input Offset Voltage ±150 µV (max)
- Input Bias Current 100 fA
- Input Voltage Noise 5.8 nV/VHz
- Gain Bandwidth Product 17 MHz .
- Supply Current 1.30 mA
- Supply Voltage Range 1.8V to 5.5V
- THD+N @ f = 1 kHz 0.001%
- Operating Temperature Range -40°C to 125°C
- Rail-to-rail Output Swing
- 8-Pin VSSOP Package

APPLICATIONS

- **Photovoltaic Electronics**
- **Active Filters and Buffers**
- **Sensor Interface Applications**
- **Transimpedance Amplifiers**
- Automotive

DESCRIPTION

The SM73307 is a dual, low noise, low offset, CMOS input, rail-to-rail output precision amplifier with a high gain bandwidth product. The SM73307 is ideal for a variety of instrumentation applications including solar photovoltaic.

Utilizing a CMOS input stage, the SM73307 achieves an input bias current of 100 fA, an input referred voltage noise of 5.8 nV/vHz, and an input offset voltage of less than ±150 µV. These features make the SM73307 a superior choice for precision applications.

Consuming only 1.30 mA of supply current per channel, the SM73307 offers a high gain bandwidth product of 17 MHz, enabling accurate amplification at high closed loop gains.

The SM73307 has a supply voltage range of 1.8V to 5.5V, which makes it an ideal choice for portable low power applications with low supply voltage requirements.

The SM73307 is built with TI's advanced VIP50 process technology and is offered in an 8-pin VSSOP package.

The SM73307 incorporates enhanced manufacturing and support processes for the photovoltaic and automotive market, including defect detection methodologies. Reliability qualification is compliant with the requirements and temperature grades defined in the Renewable Energy Grade and AEC-Q100 standards.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

SNOSB88B-JUNE 2011-REVISED APRIL 2013

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾⁽²⁾

9		
ESD Tolerance ⁽³⁾	Human Body Model	2000V
	Machine Model	200V
	Charge-Device Model	1000V
V _{IN} Differential		±0.3V
Supply Voltage ($V_S = V^+ - V^-$)		6.0V
Voltage on Input/Output Pins		V ⁺ +0.3V, V ⁻ -0.3V
Storage Temperature Range		-65°C to 150°C
Junction Temperature ⁽⁴⁾		+150°C
Soldering Information	Infrared or Convection (20 sec)	235°C
	Wave Soldering Lead Temp. (10 sec)	260°C

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional. For specifications and the test conditions, see the Electrical Characteristics Tables.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

(3) Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

(4) The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC Board.

Operating Ratings⁽¹⁾

Temperature Range ⁽²⁾	-40°C to 125°C	
Supply Voltage ($V_S = V^+ - V^-$)	$0^{\circ}C \leq T_{A} \leq 125^{\circ}C$	1.8V to 5.5V
	$-40^{\circ}C \le T_{A} \le 125^{\circ}C$	2.0V to 5.5V
Package Thermal Resistance $(\theta_{JA}^{(2)})$	8-Pin VSSOP	236°C/W

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional. For specifications and the test conditions, see the Electrical Characteristics Tables.

(2) The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_{D} = (T_{J(MAX)} - T_{A})/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC Board.

2.5V Electrical Characteristics

Unless otherwise specified, all limits are specified for $T_A = 25^{\circ}C$, $V^+ = 2.5V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Co	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units	
	Innut Offect Veltere	$-20^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$		±20	±180 ±330		
V _{OS}	Input Offset Voltage	-40° C ≤ T _A ≤ 125°		<u>+20</u>	±180 ±430	μV	
TC V_{OS}	Input Offset Voltage Temperature Drift ⁽³⁾⁽⁴⁾				-1.75	±4	µV/°C
	lanut Diag Courset	V _{CM} = 1.0V ⁽⁵⁾⁽⁴⁾	$-40^{\circ}C \le T_A \le 85^{\circ}C$		0.05	1 25	- 1
IB	Input Bias Current	$v_{CM} = 1.0 V^{(0)(1)}$	-40° C ≤ T _A ≤ 125°C		0.05	1 100	рА

(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using the Statistical Quality Control (SQC) method.

(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

(3) Offset voltage average drift is determined by dividing the change in V_{OS} at the temperature extremes by the total temperature change.
(4) This parameter is specified by design and/or characterization and is not tested in production.

(5) Positive current corresponds to current flowing into the device.

2 Submit Documentation Feedback

2.5V Electrical Characteristics (continued)

Unless otherwise specified, all limits are specified for $T_A = 25^{\circ}C$, $V^+ = 2.5V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
I _{OS}	Input Offset Current	$V_{CM} = 1V^{(4)}$		0.006	0.5 50	pА
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 1.4V$	83 80	100		dB
0000	Denne Oracle Deiterfree Defin	$2.0V \le V^+ \le 5.5V$ $V^- = 0V, V_{CM} = 0$	85 80	100		
PSRR	Power Supply Rejection Ratio	$1.8V \le V^+ \le 5.5V$ $V^- = 0V, V_{CM} = 0$	85	98		dB
CMVR	Common Mode Voltage Range	CMRR ≥ 80 dB CMRR ≥ 78 dB	-0.3 - 0.3		1.5 1.5	V
•		$V_0 = 0.15 \text{ to } 2.2 \text{V}$ R _L = 2 k Ω to V ⁺ /2	84 80	92		
A _{VOL}	Open Loop Voltage Gain	$V_{O} = 0.15 \text{ to } 2.2 \text{V}$ R _L = 10 k Ω to V ⁺ /2	90 86	95		dB
V _{OUT}	Output Voltage Swing	$R_L = 2 \text{ k}\Omega \text{ to } V^+/2$		25	70 77	
	High Output Voltage Swing	$R_L = 10 \text{ k}\Omega \text{ to V}^+/2$		20	60 66	mV from
		$R_L = 2 k\Omega$ to V ⁺ /2		30	70 73	either rail
	Low	$R_L = 10 \text{ k}\Omega \text{ to V}^+/2$		15	60 62	
		Sourcing to V ⁻ V _{IN} = 200 mV ⁽⁶⁾	36 30	52		
I _{OUT}	Output Current	Sinking to V ⁺ V _{IN} = -200 mV ⁽⁶⁾	7.5 5.0	15		- mA
I _S	Supply Current	Per Channel		1.10	1.50 1.85	mA
SR	Slew Rate	$A_V = +1$, Rising (10% to 90%)		8.3		V/µs
SIX		$A_V = +1$, Falling (90% to 10%)		10.3		v/µ3
GBW	Gain Bandwidth			14		MHz
en	Input Referred Voltage Noise Density	f = 400 Hz		6.8		nV/√Hz
Cn	input relefied voltage relies Density	f = 1 kHz		5.8		
i _n	Input Referred Current Noise Density	f = 1 kHz		0.01		pA/√Hz
THD+N	Total Harmonic Distortion + Noise	$ f = 1 \ kHz, \ A_V = 1, \ R_L = 100 \ k\Omega \\ V_O = 0.9 \ V_{PP} $		0.003		- %
ΠUTN		$ f = 1 \text{ kHz}, \text{A}_{\text{V}} = 1, \text{R}_{\text{L}} = 600 \Omega \\ \text{V}_{\text{O}} = 0.9 \text{V}_{\text{PP}} $		0.004		/0

(6) The short circuit test is a momentary open loop test.

5V Electrical Characteristics

Unless otherwise specified, all limits are specified for $T_A = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V^+/2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions		Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units	
V _{OS}	Input Offset Voltage	-20°C ≤ T _A ≤ 85°0		±10	±150 ±300			
vos	input Onset Voltage	-40°C ≤ T _A ≤ 125	°C		±10	±150 ±400	μV	
TC V _{OS}	Input Offset Voltage Temperature Drift ⁽³⁾⁽⁴⁾				-1.75	±4	µV/°C	
	Input Rice Current	$V_{CM} = 2.0 V^{(5)(4)}$	−40°C ≤ T _A ≤ 85°C		0.1	1 25	~	
I _B	Input Bias Current	V _{CM} = 2.0V(-//)	−40°C ≤ T _A ≤ 125°C		0.1	1 100	рА	
l _{os}	Input Offset Current	$V_{CM} = 2.0V^{(4)}$			0.01	0.5 50	pА	
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 3.7V$		85 82	100		dB	
		$\begin{array}{l} 2.0 V \leq V^+ \leq 5.5 V \\ V^- = 0 V, \ V_{CM} = 0 \end{array}$		85 80	100		- dB	
PSRR	Power Supply Rejection Ratio	$1.8V \le V^+ \le 5.5V$ $V^- = 0V, V_{CM} = 0$	85	98		uв		
CMVR	Common Mode Voltage Range	CMRR ≥ 80 dB CMRR ≥ 78 dB		-0.3 - 0.3		4 4	V	
		$V_{O} = 0.3 \text{ to } 4.7 \text{V}$ R _L = 2 k Ω to V ⁺ /2		84 80	90		5	
A _{VOL}	Open Loop Voltage Gain	$V_{O} = 0.3$ to 4.7V R _L = 10 kΩ to V ⁺ /2	90 86	95		dB		
	Output Voltage Swing	$R_L = 2 k\Omega$ to V ⁺ /2			32	70 77		
.,	High	$R_L = 10 \text{ k}\Omega \text{ to } V^+/2$	2		22	60 66	mV from	
V _{OUT}	Output Voltage Swing	$R_L = 2 k\Omega$ to V ⁺ /2	$R_L = 2 k\Omega$ to V ⁺ /2			75 78	either rail	
	Low	$R_L = 10 \text{ k}\Omega \text{ to } V^+/2$	2		20	60 62		
		Sourcing to V ⁻ V _{IN} = 200 mV ⁽⁶⁾		46 38	66			
I _{OUT}	Output Current	Sinking to V ⁺ V _{IN} = $-200 \text{ mV}^{(6)}$		10.5 23 6.5			– mA	
I _S	Supply Current	(per channel)			1.30	1.70 2.05	mA	

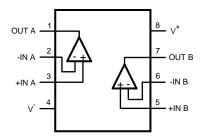
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using the Statistical Quality Control (SQC) method.

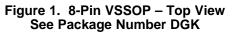
Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary (2) over time and will also depend on the application and configuration.

(3) Offset voltage average drift is determined by dividing the change in V_{OS} at the temperature extremes by the total temperature change. This parameter is specified by design and/or characterization and is not tested in production. (4)

(5) Positive current corresponds to current flowing into the device.

(6) The short circuit test is a momentary open loop test.

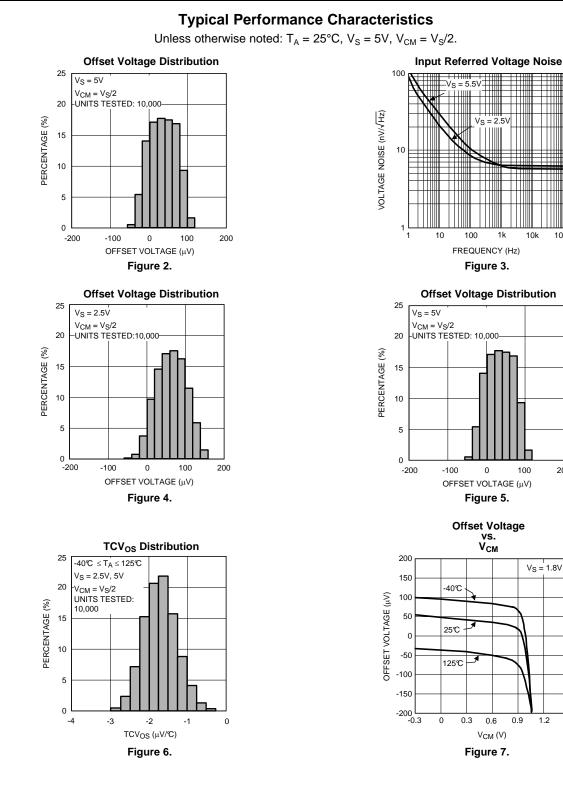



5V Electrical Characteristics (continued)

Unless otherwise specified, all limits are specified for $T_A = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V^+/2$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
0.0	Class Data	$A_V = +1$, Rising (10% to 90%)	6.0	9.5		Mar
SR	Slew Rate	$A_V = +1$, Falling (90% to 10%)	7.5	11.5		V/µs
GBW	Gain Bandwidth			17		MHz
_	Input Referred Voltage Noise Density	f = 400 Hz		7.0		nV/√Hz
e _n		f = 1 kHz		5.8		
i _n	Input Referred Current Noise Density	f = 1 kHz		0.01		pA/√Hz
THD+N 1		$ f = 1 \text{ kHz}, \text{A}_{\text{V}} = 1, \text{R}_{\text{L}} = 100 \text{k} \Omega $ $ \text{V}_{\text{O}} = 4 \text{V}_{\text{PP}} $		0.001		0/
	Total Harmonic Distortion + Noise	$f = 1 \text{ kHz}, A_V = 1, R_L = 600\Omega$ $V_O = 4 V_{PP}$		0.004		%

Connection Diagram


100k

200

1.2 1.5

SNOSB88B-JUNE 2011-REVISED APRIL 2013

www.ti.com

 $V_{S} = 5V$

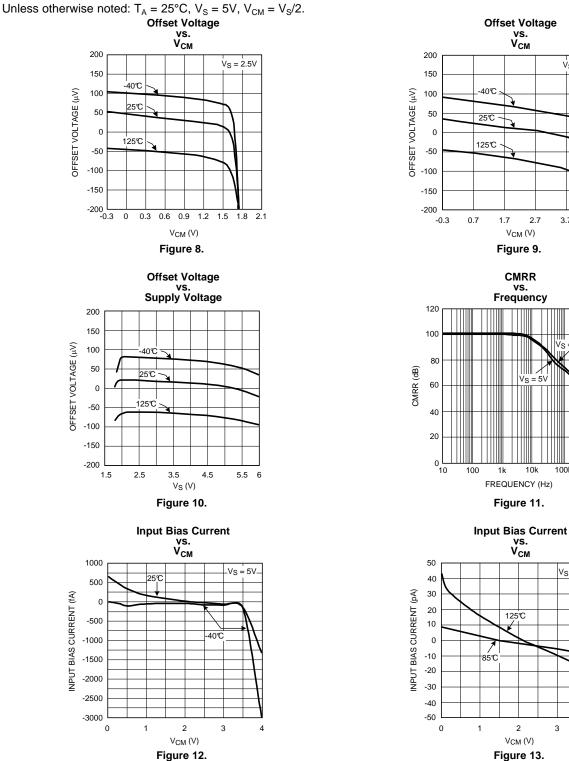
4.7

3.7

2.7

= 5\

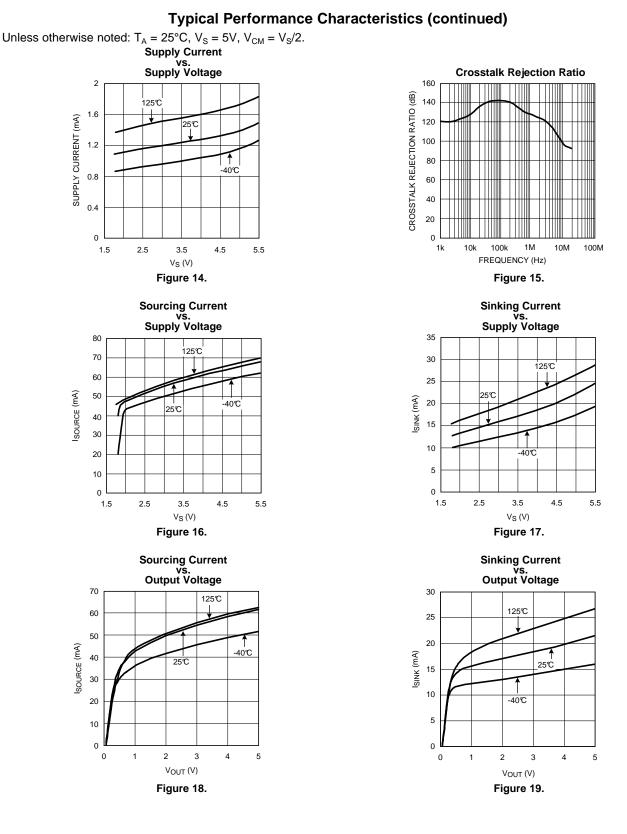
10k


100k

V_S = 5V

1M

Typical Performance Characteristics (continued)


3

SM73307

TEXAS INSTRUMENTS

www.ti.com

SNOSB88B-JUNE 2011-REVISED APRIL 2013

VOUT FROM RAIL (mV)

10

0

50

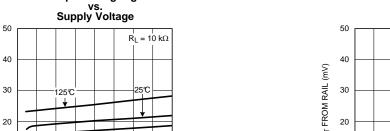
40

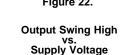
30

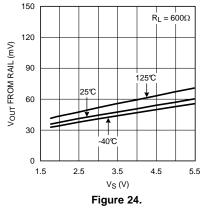
20

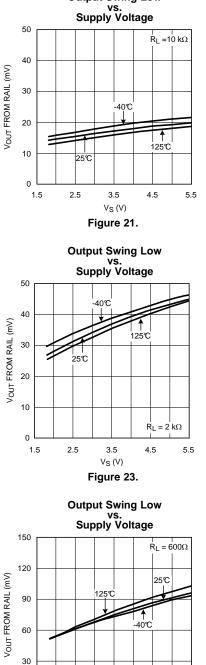
10

0


1.5


VOUT FROM RAIL (mV)


1.5



Typical Performance Characteristics (continued) Unless otherwise noted: $T_A = 25^{\circ}C$, $V_S = 5V$, $V_{CM} = V_S/2$. Output Swing High vs. Supply Voltage **Output Swing Low** 50 $R_{L} = 10 k\Omega$ 40 Vout FROM RAIL (mV) 30 25°C 25°C 20 -40℃ 10 259 0 3.5 4.5 5.5 2.5 3.5 2.5 1.5 $V_{S}(V)$ $V_{S}(V)$ Figure 20. Figure 21. **Output Swing High** vs. Supply Voltage 50 $\dot{R}_L = 2 k\Omega$ 40°C 40 VOUT FROM RAIL (mV) 125°C 1 30 25°C 20 40℃ 10 0 2.5 3.5 4.5 5.5 1.5 2.5 3.5 $V_{S}(V)$ $V_{S}(V)$ Figure 22. Figure 23. **Output Swing High** vs. Supply Voltage 150 $R_L = 600\Omega$ 120 Vout FROM RAIL (mV) 125°C 90 . 125℃ 1 25℃ 60

3.5

4.5

Submit Documentation Feedback

5.5

0

1.5

2.5

120

100

80

60

40

20

0

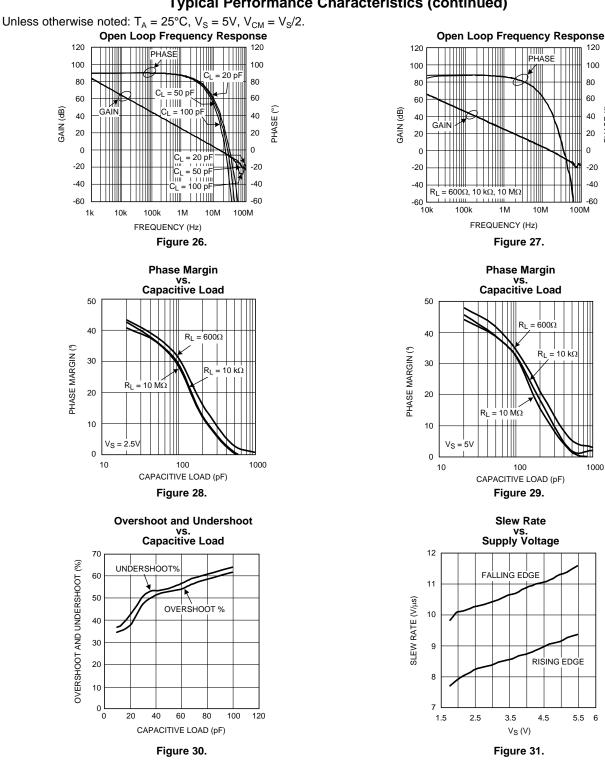
-20

-40

-60

1000

5.5 6

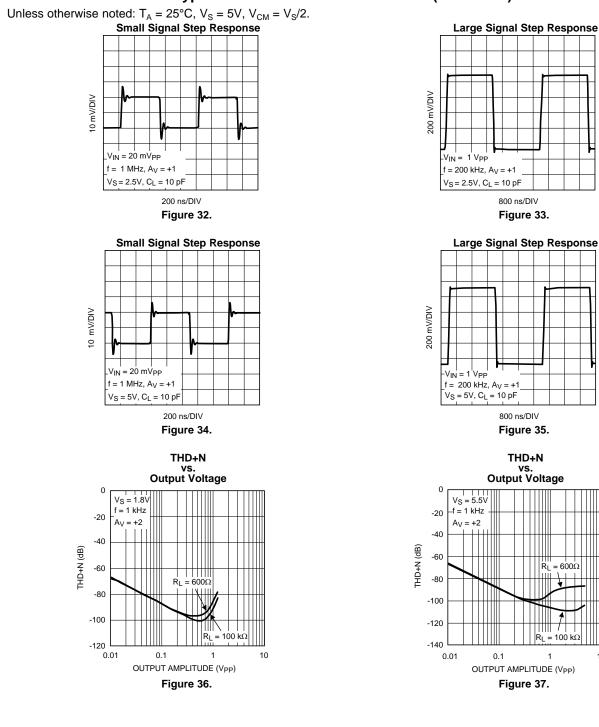

100M

 $\dot{R}_L = 10 \ k\Omega$

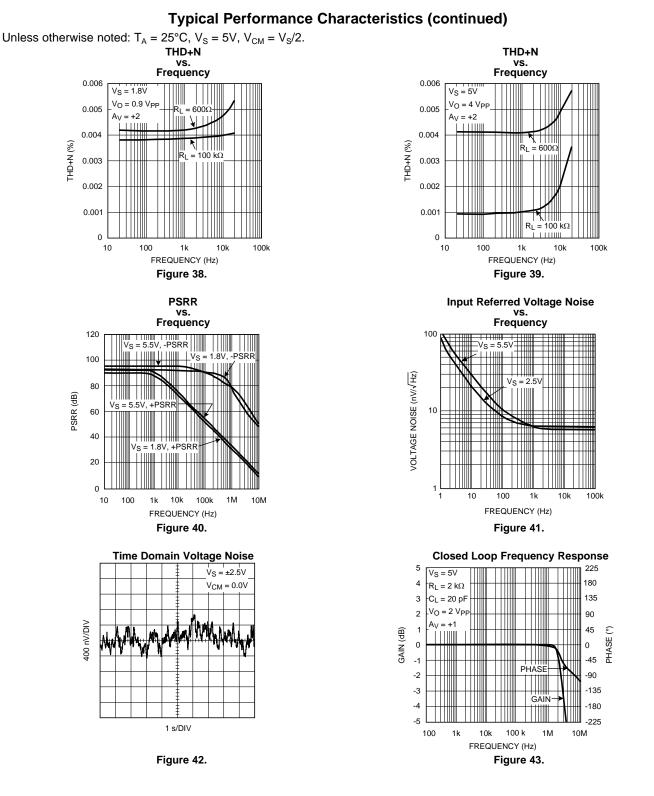
PHASE (°)

www.ti.com

SNOSB88B-JUNE 2011-REVISED APRIL 2013


Typical Performance Characteristics (continued)

SNOSB88B-JUNE 2011-REVISED APRIL 2013



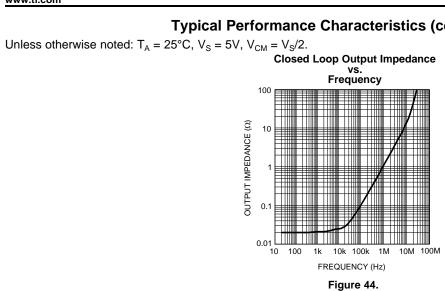
1

SM73307

SNOSB88B-JUNE 2011-REVISED APRIL 2013

www.ti.com

NSTRUMENTS


Texas

SNOSB88B-JUNE 2011-REVISED APRIL 2013

www.ti.com

Typical Performance Characteristics (continued)

APPLICATION INFORMATION

The SM73307 is a dual, low noise, low offset, rail-to-rail output precision amplifier with a wide gain bandwidth product of 17 MHz and low supply current. The wide bandwidth makes the SM73307 an ideal choice for wide-band amplification in photovoltaic and portable applications.

The SM73307 is superior for sensor applications. The very low input referred voltage noise of only 5.8 nV/ \sqrt{Hz} at 1 kHz and very low input referred current noise of only 10 fA/ \sqrt{Hz} mean more signal fidelity and higher signal-to-noise ratio.

The SM73307 has a supply voltage range of 1.8V to 5.5V over a wide temperature range of 0°C to 125°C. This is optimal for low voltage commercial applications. For applications where the ambient temperature might be less than 0°C, the SM73307 is fully operational at supply voltages of 2.0V to 5.5V over the temperature range of -40° C to 125°C.

The outputs of the SM73307 swing within 25 mV of either rail providing maximum dynamic range in applications requiring low supply voltage. The input common mode range of the SM73307 extends to 300 mV below ground. This feature enables users to utilize this device in single supply applications.

The use of a very innovative feedback topology has enhanced the current drive capability of the SM73307, resulting in sourcing currents of as much as 47 mA with a supply voltage of only 1.8V.

The SM73307 is offered in an 8-pin VSSOP package. This small package is an ideal solution for applications requiring minimum PC board footprint.

CAPACITIVE LOAD

The unity gain follower is the most sensitive configuration to capacitive loading. The combination of a capacitive load placed directly on the output of an amplifier along with the output impedance of the amplifier creates a phase lag which in turn reduces the phase margin of the amplifier. If phase margin is significantly reduced, the response will be either under-damped or the amplifier will oscillate.

The SM73307 can directly drive capacitive loads of up to 120 pF without oscillating. To drive heavier capacitive loads, an isolation resistor, R_{ISO} as shown in Figure 45, should be used. This resistor and C_L form a pole and hence delay the phase lag or increase the phase margin of the overall system. The larger the value of R_{ISO} , the more stable the output voltage will be. However, larger values of R_{ISO} result in reduced output swing and reduced output current drive.

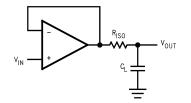


Figure 45. Isolating Capacitive Load

INPUT CAPACITANCE

CMOS input stages inherently have low input bias current and higher input referred voltage noise. The SM73307 enhances this performance by having the low input bias current of only 50 fA, as well as, a very low input referred voltage noise of 5.8 nV/ $\sqrt{\text{Hz}}$. In order to achieve this a larger input stage has been used. This larger input stage increases the input capacitance of the SM73307. Figure 46 shows typical input common mode capacitance of the SM73307.

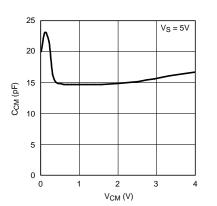


Figure 46. Input Common Mode Capacitance

This input capacitance will interact with other impedances, such as gain and feedback resistors which are seen on the inputs of the amplifier, to form a pole. This pole will have little or no effect on the output of the amplifier at low frequencies and under DC conditions, but will play a bigger role as the frequency increases. At higher frequencies, the presence of this pole will decrease phase margin and also cause gain peaking. In order to compensate for the input capacitance, care must be taken in choosing feedback resistors. In addition to being selective in picking values for the feedback resistor, a capacitor can be added to the feedback path to increase stability.

The DC gain of the circuit shown in Figure 47 is simply $-R_2/R_1$.

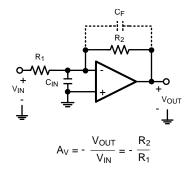


Figure 47. Compensating for Input Capacitance

For the time being, ignore C_F . The AC gain of the circuit in Figure 47 can be calculated as follows:

$$\frac{V_{OUT}}{V_{IN}}(s) = \frac{-R_2/R_1}{\left[1 + \frac{s}{\left(\frac{A_0}{R_1}R_1}\right)^{+} \frac{s^2}{\left(\frac{A_0}{C_{IN}R_2}\right)^{-}}\right]}$$

This equation is rearranged to find the location of the two poles:

$$P_{1,2} = \frac{-1}{2C_{IN}} \left[\frac{1}{R_1} + \frac{1}{R_2} \pm \sqrt{\left(\frac{1}{R_1} + \frac{1}{R_2}\right)^2 - \frac{4A_0C_{IN}}{R_2}} \right]$$
(2)

As shown in Equation 2, as the values of R_1 and R_2 are increased, the magnitude of the poles are reduced, which in turn decreases the bandwidth of the amplifier. Figure 48 shows the frequency response with different value resistors for R_1 and R_2 . Whenever possible, it is best to choose smaller feedback resistors.

(1)

SNOSB88B-JUNE 2011-REVISED APRIL 2013

www.ti.com

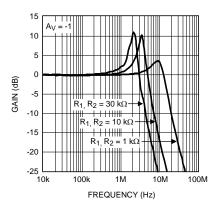


Figure 48. Closed Loop Frequency Response

As mentioned before, adding a capacitor to the feedback path will decrease the peaking. This is because C_F will form yet another pole in the system and will prevent pairs of poles, or complex conjugates from forming. It is the presence of pairs of poles that cause the peaking of gain. Figure 49 shows the frequency response of the schematic presented in Figure 47 with different values of C_F . As can be seen, using a small value capacitor significantly reduces or eliminates the peaking.

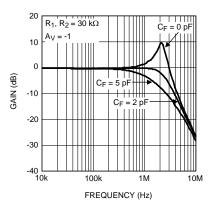


Figure 49. Closed Loop Frequency Response

TRANSIMPEDANCE AMPLIFIER

In many applications the signal of interest is a very small amount of current that needs to be detected. Current that is transmitted through a photodiode is a good example. Barcode scanners, light meters, fiber optic receivers, and industrial sensors are some typical applications utilizing photodiodes for current detection. This current needs to be amplified before it can be further processed. This amplification is performed using a current-to-voltage converter configuration or transimpedance amplifier. The signal of interest is fed to the inverting input of an op amp with a feedback resistor in the current path. The voltage at the output of this amplifier will be equal to the negative of the input current times the value of the feedback resistor. Figure 50 shows a transimpedance amplifier configuration. C_D represents the photodiode parasitic capacitance and C_{CM} denotes the common-mode capacitance of the amplifier. The presence of all of these capacitances at higher frequencies might lead to less stable topologies at higher frequencies. Care must be taken when designing a transimpedance amplifier to prevent the circuit from oscillating.

With a wide gain bandwidth product, low input bias current and low input voltage and current noise, the SM73307 is ideal for wideband transimpedance applications.

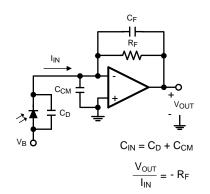


Figure 50. Transimpedance Amplifier

A feedback capacitance C_F is usually added in parallel with R_F to maintain circuit stability and to control the frequency response. To achieve a maximally flat, 2nd order response, R_F and C_F should be chosen by using Equation 3:

$$C_{F} = \sqrt{\frac{C_{IN}}{GBWP * 2 \pi R_{F}}}$$
(3)

Calculating C_F from Equation 3 can sometimes result in capacitor values which are less than 2 pF. This is especially the case for high speed applications. In these instances, it is often more practical to use the circuit shown in Figure 51 in order to allow more sensible choices for C_F. The new feedback capacitor, C_F', is (1+ R_B/R_A) C_F. This relationship holds as long as $R_A << R_F$.

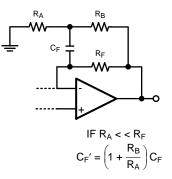


Figure 51. Modified Transimpedance Amplifier

SENSOR INTERFACE

The SM73307 has a low input bias current and low input referred noise, which makes it an ideal choice for sensor interfaces such as thermopiles, Infra Red (IR) thermometry, thermocouple amplifiers, and pH electrode buffers.

Thermopiles generate voltage in response to receiving radiation. These voltages are often only a few microvolts. As a result, the operational amplifier used for this application needs to have low offset voltage, low input voltage noise, and low input bias current. Figure 52 shows a thermopile application where the sensor detects radiation from a distance and generates a voltage that is proportional to the intensity of the radiation. The two resistors, R_A and R_B, are selected to provide high gain to amplify this signal, while C_F removes the high frequency noise.

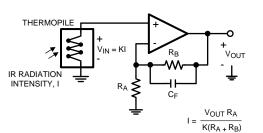


Figure 52. Thermopile Sensor Interface

PRECISION RECTIFIER

Rectifiers are electrical circuits used for converting AC signals to DC signals. Figure 53 shows a full-wave precision rectifier. Each operational amplifier used in this circuit has a diode on its output. This means for the diodes to conduct, the output of the amplifier needs to be positive with respect to ground. If V_{IN} is in its positive half cycle then only the output of the bottom amplifier will be positive. As a result, the diode on the output of the bottom amplifier will show at the output of the circuit. If V_{IN} is in its negative half cycle then the output of the top amplifier will be positive, resulting in the diode on the output of the top amplifier conducting and delivering the signal from the amplifier's output to the circuit's output.

For $R_2/R_1 \ge 2$, the resistor values can be found by using the equation shown in Figure 53. If $R_2/R_1 = 1$, then R_3 should be left open, no resistor needed, and R_4 should simply be shorted.

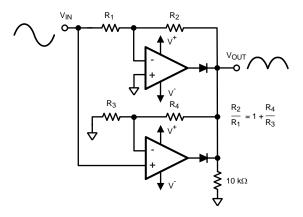


Figure 53. Precision Rectifier

SNOSB88B-JUNE 2011-REVISED APRIL 2013

REVISION HISTORY

Ch	nanges from Revision A (April 2013) to Revision B	Page
•	Changed layout of National Data Sheet to TI format	. 18

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
SM73307MM/NOPB	ACTIVE	VSSOP	DGK	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	S307	Samples
SM73307MME/NOPB	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	S307	Samples
SM73307MMX/NOPB	ACTIVE	VSSOP	DGK	8	3500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	S307	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

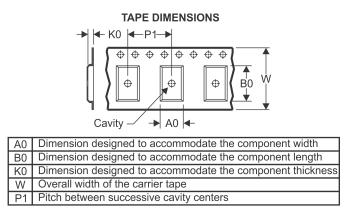
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

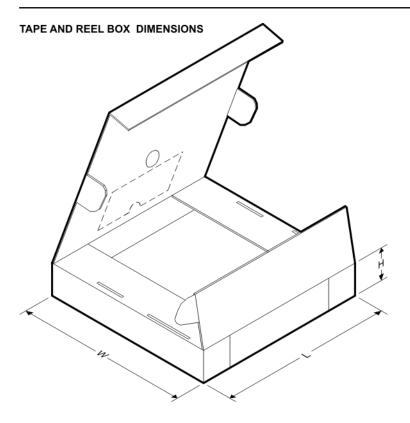

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

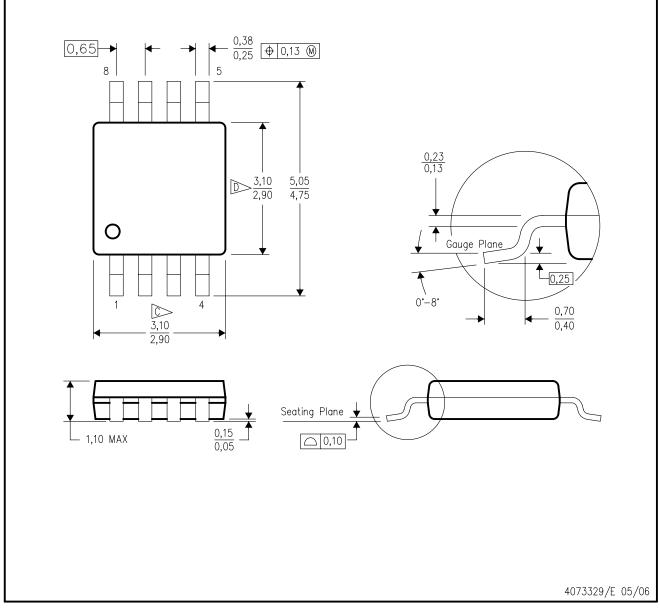

All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SM73307MM/NOPB	VSSOP	DGK	8	1000	178.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
SM73307MME/NOPB	VSSOP	DGK	8	250	178.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
SM73307MMX/NOPB	VSSOP	DGK	8	3500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

26-Mar-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SM73307MM/NOPB	VSSOP	DGK	8	1000	203.0	190.0	41.0
SM73307MME/NOPB	VSSOP	DGK	8	250	203.0	190.0	41.0
SM73307MMX/NOPB	VSSOP	DGK	8	3500	367.0	367.0	35.0

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated