LM831

LM831 Low Voltage Audio Power Amplifier

Literature Number: SNOSBP6A

LM831 Low Voltage Audio Power Amplifier

General Description

The LM831 is a dual audio power amplifier optimized for very low voltage operation. The LM831 has two independent amplifiers, giving stereo or higher power bridge (BTL) operation from two- or three-cell power supplies.

The LM831 uses a patented compensation technique to reduce high-frequency radiation for optimum performance in AM radio applications. This compensation also results in lower distortion and less wide-band noise.

The input is direct-coupled to the LM831, eliminating the usual coupling capacitor. Voltage gain is adjustable with a single resistor.

■ Low voltage operation, 1.8V to 6.0V ■ High power, 440 mW, 8Ω, BTL, 3V

Features

- Low AM radiation
- Low noise
- Low THD

Applications

- Portable tape recorders
- Portable radios
- Headphone stereo
 - Portable speakers

LM831 Low Voltage Audio Power Amplifier

© 1995 National Semiconductor Corporation TL/H/6754 RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings							
If Military/Aerospace specified de	vices are required,	Storage Temperature, T _{stg}	-65°C to +150°C				
please contact the National Se	miconductor Sales	Junction Temperature, T	+ 150°C				
Office/Distributors for availability a	nd specifications.	Lead Temp. (Soldering, 10 sec.), TL	+ 260°C				
Supply Voltage, V _S	7.5V	Thermal Resistance					
Input Voltage, V _{IN}	\pm 0.4V	$\theta_{\rm JC}$ (DIP)	27°C/W				
Power Dissipation (Note 1), PD	1.3W (M Package)	θ_{JA} (DIP)	75°C/W				
	1.4W (N Package)	$\theta_{\rm JC}$ (SO Package)	20°C/W				
Operating Temperature (Note 1), T _{opr}	-40°C to +85°C	θ_{JA} (SO Package)	95°C/W				

Electrical Characteristics

Unless otherwise specified, $T_A = 25^{\circ}$ C, $V_S = 3$ V, f = 1 kHz, test circuit is dual or BTL amplifier with minimum parts.

Symbol	Parameter	Conditions	Тур	Tested Limit	Unit (Limit)
VS	Operating Voltage		3 3	1.8 6	V(Min) V(Max)
Ι _Q	Supply Current	$V_{IN} = 0$, Dual Mode $V_{IN} = 0$, BTL Mode	5 6	10 15	mA (Max) mA (Max)
V _{OS}	Output DC Offset	$V_{IN} = 0$, BTL Mode	10	50	mV (Max)
R _{IN}	Input Resistance		25	15 35	k (Min) k (Max)
A _V	Voltage Gain	$V_{IN} = 2.25 \text{ mV}_{rms}$, f = 1 kHz, Dual Mode	46	44 48	dB (Min) dB (Max)
PSRR	Supply Rejection	$V_{S} = 3V + 200 \text{ mV}_{rms} @ f = 1 \text{ kHz}$	46	30	dB (Min)
P _{OD}	Power Out	$V_{S} = 3V, R_{L} = 4\Omega,$ 10% THD, Dual Mode	220	150	mW (Min)
P _{ODL}	Power Out Low, V _S	$V_{S} = 1.8V, R_{L} = 4\Omega,$ 10% THD, Dual Mode	45	10	mW (Min)
P _{OB}	Power Out	$V_{S} = 3V, R_{L} = 8\Omega,$ 10% THD, BTL Mode	440	300	mW (Min)
P _{OBL}	Power Out Low, V _S	$V_{S} = 1.8V, R_{L} = 8\Omega,$ 10% THD, BTL Mode	90	20	mW (Min)
Sep	Channel Separation	Referenced to $V_0 = 200 \text{ mV}_{rms}$	52	40	dB (Min)
IB	Input Bias Current		1	2	μA (Max)
E _{n0}	Output Noise	Wide Band (250 ~ 35 kHz)	250	500	μV (Max)
THD	Distortion	$V_{S} = 3V, P_{O} = 50 \text{ mW},$ f = 1 kHz, Dual	0.25	1	% (Max)

Note 1: For operation in ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 98°C/W junction to ambient for the M package or 90°C/W junction to ambient for the N package.

Connection Diagram

LM831 Circuit Description Refer to the external component diagram and equivalent schematic.

The power supply is applied to Pin 9 and is filtered by resistor R_1 and capacitor C_{BY} on Pin 16. This filtered voltage at Pin 16 is used to bias all of the LM831 circuits except the power output stage. Resistor R_0 generates a biasing current that sets the output DC voltage for optimum output power for any given supply voltage.

The capacitor $C_{\mbox{NF}}$ on Pin 2 provides unity DC gain for maximum DC accuracy.

 Q_2 provides voltage gain and the rest of the devices buffer the output load from $Q_2{\,}{}^{\prime}{}^{\prime}{}^{\prime}$ collector.

Bootstrapping of Pin 5 by $C_{\mbox{\scriptsize BS}}$ allows maximum output swing and improved supply rejection.

R₅ is provided for bridge (BTL) operation.

Feedback is provided to the input transistor Q_1 emitter by R_6 and $\mathsf{R}_7.$

Described to stability			IVIIII	Max
Required to stabilize output stage.			0.33 μF	1 μF
Output coupling capacitors for Dual Mode. Sets a low-frequency pole in the frequency response. $f_L = \frac{1}{2\pi C_c R_L}$			100 µF	10,000 µl
Bootstrap capacitors. Sets a low-frequency pole in the power BW. Recommended value is $C_{BS} = \frac{1}{10^{\bullet}2\pi^{\bullet}f_{L}^{\bullet}R_{L}}$			22 μF or (short Pins 4 & 12 to 9)	470 μF
Supply bypass. Larger values improve low-battery performance by reducing supply ripple.			47 μF	10,000 μ
Filters the supply for turn-on delay.	improved low-voltage op	eration. Also sets	47 μF	470 μF
$\label{eq:sets} \begin{array}{l} \mbox{Sets a low-frequency response. Also affects turn-on delay.} \\ f_L = \frac{1}{2\pi^{\bullet}C_{NF}^{\bullet}(R_{AV}+80)} \\ \mbox{In BTL Mode, C_{NF} on Pin 15 can be reduced without affecting the frequency response. However, the turn-on "POP" will be worsened.} \end{array}$			10 µF	100 μF
Used only in the Bridge Mode. Connects the output of the first amplifier to the inverting input of the other through an internal resistor. Sets a low-frequency pole in one-half the frequency response. $f_L = \frac{1}{2\pi \bullet C_{BTL} \bullet 16k}$			0.1 µF	1 μF
Improves clipping wa Works with an intern For 46 dB applicatio	lipping waveform and sets the high-frequency bandwidth. an internal 16k resistor. (This equation applies for $R_{AV} \neq 0$. application, see $BW-C_{BW}$ curve.) $f_H = \frac{1}{2\pi^{\bullet}C_{BW}^{\bullet}16k}$		See table below	
Used to reduce the gamma this is desired, C_{BW}	gain and improve the disto must also be used.	ortion and signal to noise. If	See table	e below
				
Av	R _{AV}	Min	-BM M	ax
3	Short	Open	4700	0 pF
3	-82	100 pF	4700 pF	
3	240	270 pF	4700 pF	
3	560	500 pF	4700 pF	
	Bootstrap capacitors Recommended value Supply bypass. Larg reducing supply rippl Filters the supply for turn-on delay. Sets a low-frequency Sets a low-frequency In BTL Mode, C _{NF} or frequency response. Used only in the Bric the inverting input of frequency pole in on Improves clipping wa Works with an interm For 46 dB application Used to reduce the g this is desired, C _{BW} in Av	$f_{L} = \frac{1}{2\pi C_{C}R_{L}}$ Bootstrap capacitors. Sets a low-frequency prediction of the set of	$f_L = \frac{1}{2\pi C_C R_L}$ Bootstrap capacitors. Sets a low-frequency pole in the power BW. Recommended value is $C_{BS} = \frac{1}{10 \cdot 2\pi \cdot f_L \cdot R_L}$ Supply bypass. Larger values improve low-battery performance by reducing supply ripple. Filters the supply for improved low-voltage operation. Also sets turn-on delay. Sets a low-frequency response. Also affects turn-on delay. $f_L = \frac{1}{2\pi \cdot C_N F} \cdot (R_{AV} + 80)$ In BTL Mode, C_{NF} on Pin 15 can be reduced without affecting the frequency response. However, the turn-on "POP" will be worsened. Used only in the Bridge Mode. Connects the output of the first amplifier to the inverting input of the other through an internal resistor. Sets a low- frequency pole in one-half the frequency response. $f_L = \frac{1}{2\pi \cdot C_B T \cdot 16k}$ Improves clipping waveform and sets the high-frequency bandwidth. Works with an internal 16k resistor. (This equation applies for $R_{AV} \neq 0$. For 46 dB application, see BW- C_{BW} curve.) $f_H = \frac{1}{2\pi \cdot C_B W} \cdot 16k$ Used to reduce the gain and improve the distortion and signal to noise. If this is desired, C_{BW} must also be used. $A_V \qquad R_{AV} \qquad Min$ $3 \qquad Short \qquad Open$ $3 \qquad 240 \qquad 270 \text{ pF}$ $3 \qquad 560 \qquad 500 \text{ pF}$	$f_{L} = \frac{1}{2\pi C_{c} R_{L}}$ Bootstrap capacitors. Sets a low-frequency pole in the power BW. Recommended value is $C_{BS} = \frac{1}{10 \bullet 2\pi \bullet f_{L} \bullet R_{L}}$ Supply bypass. Larger values improve low-battery performance by reducing supply ripple. Filters the supply for improved low-voltage operation. Also sets turn-on delay. Sets a low-frequency response. Also affects turn-on delay. $f_{L} = \frac{1}{2\pi \bullet C_{NF} \bullet (R_{AV} + 80)}$ In BTL Mode, C_{NF} on Pin 15 can be reduced without affecting the frequency response. However, the turn-on "POP" will be worsened. Used only in the Bridge Mode. Connects the output of the first amplifier to the inverting input of the other through an internal resistor. Sets a low- frequency pole in one-half the frequency tesponse. $f_{L} = \frac{1}{2\pi \bullet C_{BT} \bullet 16k}$ Improves clipping waveform and sets the high-frequency bandwidth. Works with an internal 16k resistor. (This equation applies for $R_{AV} \neq 0$. For 46 dB application, see BW – C_{BW} wrele). $f_{H} = \frac{1}{2\pi \bullet C_{BW} \bullet 16k}$ Used to reduce the gain and improve the distortion and signal to noise. If this is desired, C_{BW} must also be used. $A_{V} \qquad R_{AV} \qquad Min \qquad Min \qquad Mi$ a Short Open 4700 a 240 270 pF 4700 b 500 pF 500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated