

LM3017 High Efficiency Low-Side Controller with True Shutdown

Check for Samples: LM3017

FEATURES

- Fully compliant to Thunderbolt[™] Technology specifications
- True shutdown for short circuit protection
- Single enable pin with three modes of operation: boost, pass through, or shutdown
- Built-in charge pump for high-side NFET disconnect switch
- 1A push-pull driver for low-side NFET
- Peak current mode control
- Simple slope compensation
- Protection features: thermal shutdown, cycleby-cycle current limit, short circuit protection,

output overvoltage protection, and latch-off

- Internal soft-start
- 2.4mm x 2.7mm x 0.8mm 10-pin QFN package

APPLICATIONS

- Thunderbolt Technology[™] Host Ports •
- Notebook and Desktop Computers, Tablets, and Other Portable Consumer Electronics
- Hard Disc Drives, Solid State Drives
- **Offline Power Supplies** •
- Set-Top Boxes

DESCRIPTION

The LM3017 is a versatile low-side NFET controller incorporating true shutdown and input side current limiting. It is designed for simple implementation of boost conversions in Thunderbolt[™] Technology. The LM3017 can also be configured for flyback or SEPIC designs. The input voltage range of 5V to 18V accommodates a two or three cell lithium ion battery or a 12V rail. The enable pin accepts a single input to drive three different modes of operation: boost, pass through, or shutdown mode. The LM3017 draws very low current in shutdown mode, typically 40nA from the input supply.

The LM3017 provides an adjustable output from V_{IN} to 20V in order to drive the Power Load Switch or Mux for the host Thunderbolt[™] port. The ability to drive an external high-side NMOS provides for true isolation of the load from the input. Current limiting on the input ensures that inrush and short-circuit currents are always under control. The LM3017 incorporates built in thermal shutdown, cycle-by-cycle current limit, short circuit protection, output overvoltage protection, and soft-start. It is available in a 10-pin QFN package.

Table 1. Key Specifications

	VALUE	UNIT
Input voltage range of 5V to 18V		
400 kHz fixed frequency operation		
±1% reference voltage accuracy over temperature		
Low shutdown current (< 1µA), 40nA typical		
±3% D.C. input current limit		

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

LM3017

SNOSC66-MARCH 2012

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Typical Application Circuit

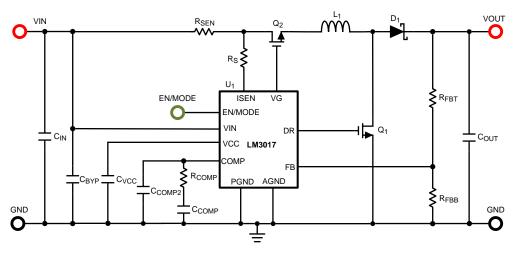
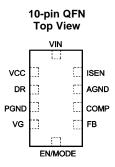



Figure 1. Typical Boost Converter Application

Pin Descriptions

Pin	Name	Description	Function
1	VCC	Driver supply voltage pin	Output of internal regulator powering low side NMOS driver. A minimum of 0.47μ F must be connected from this pin to PGND for proper operation.
2	DR	Low-side NMOS gate driver output	Output gate drive to low side NMOS gate.
3	PGND	Power Ground	Ground for power section. External power circuit reference. Should be connected to AGND at a single point.
4	VG	High side NMOS gate driver output	Output gate drive to high side NMOS gate.
5	EN/MODE	Multi-function input pin	This input provides for chip enable, and mode selection. See functional description for details.
6	FB	Feed-back input pin	Negative input to error amplifier. Connect to feed-back resistor tap to regulate output.
7	COMP	Compensation pin	A resistor and capacitor combination connected to this pin provides frequency compensation for the regulator control loop.
8	AGND	Analog Ground	Ground for analog control circuitry. Reference point for all stated voltages.
9	ISEN	Current sense input	Current sense input, with respect to Vin, for all current limit functions.
10	VIN	Power Supply input pin	Input supply to regulator. See applications section for recommendations on bypass capacitors on this pin.

www.ti.com

Absolute Maximum Ratings (1)

VIN to PGND, AGND	-0.3V to 20V
FB, EN/MODE, COMP, VCC	-0.3V to 6V
ISEN, DR, VG to PGND, AGND	-0.3V to 20V
Peak low side driver output current	1.0A

(1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings indicates conditions for which the device is intended to be functional, but does not specify performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions.

Operating Ratings ⁽¹⁾

VIN	5V to 18V
Junction Temperature Range (T _J)	−40°C to +125°C
ESD Susceptibility ⁽²⁾	±2 kV

(1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings indicates conditions for which the device is intended to be functional, but does not specify performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions.

(2) The human body model is a 100 pF capacitor discharged through a 1.5kΩ resistor into each pin. Test method is per JESD-22-114.

Electrical Characteristics

Limits in standard type are for $T_J = 25^{\circ}$ C only; limits in boldface type apply over the junction temperature (T_J) range of -40°C to +125°C. Minimum and Maximum limits are guaranteed through test, design or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25^{\circ}$ C, and are provided for reference purposes only. Unless otherwise stated the following conditions apply: Vin = 12V.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур ⁽²⁾	Max ⁽¹⁾	Units
V_{FB}	Feedback Voltage	Vcomp = 1.4V, 5V ≤ Vin ≤ 18V 0°C to +85°C	1.26225	1.275	1.28775	V
	Feedback Voltage	Vcomp = 1.4V, 5V ≤ Vin ≤ 18V -40°C to +125°C	1.2495	1.275	1.3005	V
ΔV_{LINE}	Feedback Voltage Line Regulation	5V ≤ Vin ≤ 18V		TBD		%/V
ΔV_{LOAD}	Output Voltage Load Regulation	Vin = 12V		TBD		%/A
V _{UVLO}	Input Under Voltage Lock-Out reference Voltage	Ramping up	TBD	4.5	TBD	V
	Input Under Voltage Lock-Out reference Voltage Hysteresis		TBD	300	TBD	mV
Fnom	Nominal Switching Frequency	(3)	360	400	440	kHz
R _{DS(ON)}	Low side NMOS driver resistance; top switch	Vin = 5V, $I_{DR} = 0.2A$		4		Ω
	Low side NMOS driver resistance; bottom switch	Vin = 5V, $I_{DR} = 0.2A$		2		Ω
V _{DR (max)}	Maximum Driver Voltage Supply	Vin < 6V		Vin		V
		Vin ≥ 6V		6		
D _{max}	Maximum Duty Cycle			85		%
T _{min(on)}	Minimum On Time			250		ns
l _{run}	Supply Current in Boost Mode - No-load	EN/MODE pin = 1.6V FEEDBACK pin = 1.4V		4	TBD	mA
Ι _Q	Supply Current in Shutdown Mode	EN/MODE pin = 0.3V			1	μA
I _{stby}	Supply Current in Stand-by mode	EN/MODE pin = 2.6V		1.2	TBD	mA
V _{en-stby}	Stand-by Mode Threshold	EN/MODE pin thresholds	TBD	2.6	TBD	V
V _{en-shutdown}	Shut-down Mode Threshold	EN/MODE pin thresholds	TBD	0.4	TBD	V
V _{en-run}	Run Mode Window	EN/MODE pin thresholds	1.6	1.9	2.2	V
l _{en}	EN/MODE pin bias current	EN/MODE = 1.6V	TBD	±1.0	TBD	μA
V _{SENSE}	Cycle-by-Cycle Current Limit Threshold during boost mode	EN/MODE = 1.6V FB = 0.5V	153	170	187	mV
V _{SL}	Internal Ramp Compensation Voltage			90		mV
V _{LIM1}	Input Current Limit Threshold Voltage in Stand-by mode	EN/MODE = 2.6V ⁽⁴⁾	82	85	88	mV
V _{LIM2}	Input Current Limit Threshold Voltage in Stand-by Mode (during Start-up)	EN/MODE = 2.6V ⁽⁴⁾	TBD	102	TBD	mV
V _{OVP}	Output-Over Voltage Protection Threshold	Measured with respect to FB pin. VCOMP = 1.4V	TBD	85	TBD	mV
V _{OVP(HYS)}	Output-Over Voltage Protection Threshold Hysteresis	Measured with respect to FB pin. VCOMP = 1.4V	TBD	70	TBD	mV
V_{SC}	Short Circuit Current Limit Threshold during boost mode			200		mV
G _m	Error Amplifier Transconductance	VCOMP = 1.4V	216	450	690	μA/\

(1) Min and Max limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate the Average Quality Level (AOQL).

(2) Typical numbers are at 25°C and represent the most likely parametric norm.

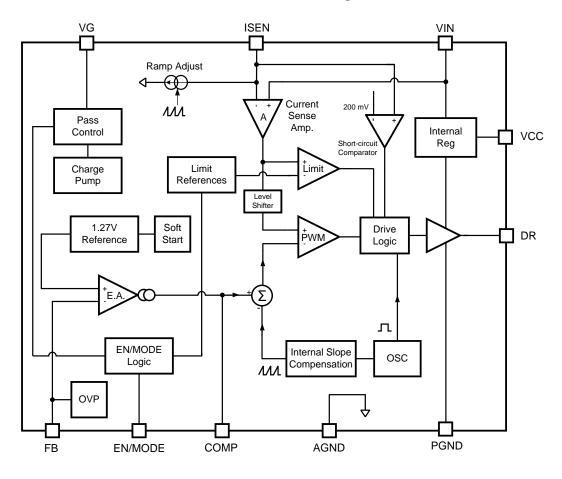
(3) Typical values are programmed by metal mask options. The following options are available: 100 kHz, 200 kHz, 340 kHz, 400 kHz, 500 kHz, 750 kHz, 1 MHz. Consult the factory for details.

(4) See text for details of current limit operation.

4 Submit Documentation Feedback

Electrical Characteristics (continued)

Limits in standard type are for $T_J = 25^{\circ}$ C only; limits in boldface type apply over the junction temperature (T_J) range of -40°C to +125°C. Minimum and Maximum limits are guaranteed through test, design or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25^{\circ}$ C, and are provided for reference purposes only. Unless otherwise stated the following conditions apply: Vin = 12V.


Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
V _{G-max}	Maximum Drive voltage at VG pin	Vin = 5V, Isense = 5V $I_G = 0A$		10		V
$V_{G\text{-min}}$	Minimum Drive voltage at VG pin	Vin = 5V, Isense = Vin - 200mV $I_G = 0A$		100		mV
I _G	Maximum Drive current at VG pin	Vin = 5V, Isense = 5V V _G = Vin		500		μA
A _{VOL}	Error Amplifier Open Loop Voltage Gain		35	60	66	V/V
I _{EAO}	Error Amplifier Output Current Limits	SOURCING: VCOMP = 1.4V V _{FB} = 1.1V	475	640	837	μA
		SINKING: VCOMP = 1.4V VFB = 1.4V	31	65	100	μA
V_{EAO}	Error Amplifier Output Voltage Limits	UPPER LIMIT: VFB = 0V	2.45	2.7	2.93	V
		LOWER LIMIT: V _{FB} = 1.4V	0.32	0.6	0.9	V
T _{ss}	Internal Soft-Start Delay	V _{FB} = 1.2V		10		ms
T _{LIM1}	Current Limit time at VLIM1	(4)		TBD		ms
T _{LIM2}	Current Limit time at VLIM2	(5)		TBD		
T _{sc}	Short-Circuit Time in Boost	(5)		TBD		ms
T _{DELAY}	Time delay to transition between stand-by and boost	(5)		TBD		
T _{BLANK}	Current Limit Latch-off Blank Time	(5)		TBD		
T _r	Drive Pin Rise Time	$Cload = 3nF$ $V_{DR} = 0V \text{ to } 3V$		25		ns
Τ _f	Drive Pin Fall Time	$\begin{array}{l} \text{Cload} = 3\text{nF} \\ \text{V}_{\text{DR}} = 3\text{V to 0V} \end{array}$		25		ns
T _{SD}	Thermal Shutdown Threshold			165		°C
T _{SD-hyst}	Thermal Shutdown Threshold Hysteresis			10		°C

(5) See text for details of current limit operation.

Functional Description

The LM3017 uses a fixed frequency, Pulse Width Modulated (PWM), current mode control architecture. In a typical application circuit, the peak current through the external high side MOSFET is sensed through an external sense resistor. The voltage across this resistor is fed into the I_{SEN} pin. This voltage is then level shifted and fed into the positive input of the PWM comparator. The output voltage is also sensed through an external feedback resistor divider network and fed into the error amplifier (EA) negative input (feedback pin, FB). The output of the error amplifier (COMP pin) is added to the slope compensation ramp and fed into the negative input of the PWM comparator.

At the start of any switching cycle, the oscillator sets a high signal on the DR pin (gate of the external MOSFET) and the external MOSFET turns on. When the voltage on the positive input of the PWM comparator exceeds the negative input, the Drive Logic is reset and the external MOSFET turns off.

The voltage sensed across the sense resistor generally contains spurious noise spikes, as shown in Figure 2. These spikes can force the PWM comparator to reset the RS latch prematurely. To prevent these spikes from resetting the latch, a blank-out circuit inside the IC prevents the PWM comparator from resetting the latch for a short duration after the latch is set. This duration, called the blank-out time, is typically 250 ns and is specified as T_{min} (on) in the electrical characteristics section.

Under extremely light load or no-load conditions, the energy delivered to the output capacitor when the external MOSFET is on during the blank-out time is more than what is delivered to the load. An over-voltage comparator inside the LM3017 prevents the output voltage from rising under these conditions by sensing the feedback (FB pin) voltage and resetting the RS latch. The latch remains in a reset state until the output decays to the nominal value. Thus the operating frequency decreases at light loads, resulting in excellent efficiency.

SNOSC66-MARCH 2012

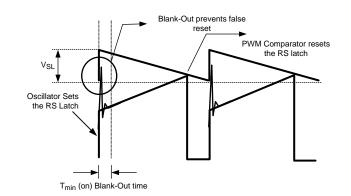


Figure 2. Basic Operation of the PWM comparator

OPERATION OF THE EN/MODE PIN

The EN/MODE pin drives the high side gate (VG pin) to enable or disable the output through the high side MOSFET (pass MOSFET), furthermore it defines the current limit for each operation mode (see next section).

- 1) $V_{EN/MODE} < 0.4V$ Shutdown mode
- 2) $0.4V < V_{EN/MODE} < 2.6V$ Boost mode
- 3) $V_{EN/MODE} > 2.6V$ Standby mode

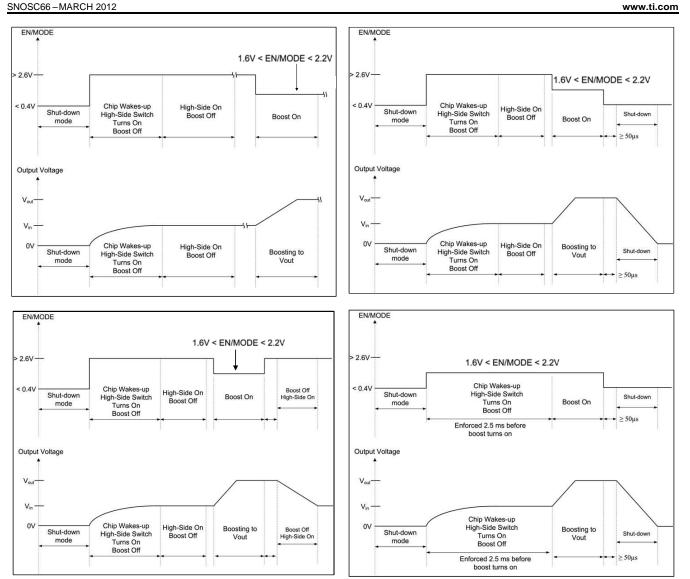
SHUTDOWN MODE

Pulling the EN/MODE pin to less than 0.4V, for more than 50μ S, during any mode of operation, will place the part in full shutdown mode. The boost regulator and high-side NMOS FET will be off and the load will be disconnected from the input supply. In this mode, the regulator will draw a maximum of 1μ A from the input supply.

BOOST MODE

The boost regulator can be turned on by bringing the EN/MODE pin to greater than 1.6V, but less than 2.2V. This is the run mode for the boost regulator. Note that the LM3017 will always start in stand-by and transition to boost mode, after a delay of TDELAY=XXms (typ); see typical waveforms. If the EN/MODE pin is taken to a value >2.6V, the part will enter stand-by mode.

STANDBY MODE


Pulling the EN/MODE pin to greater than 2.6V, for more than 50µS, during any mode of operation, will place the part in stand-by mode. The boost regulator will be off and the high-side NMOS FET will be on. During this mode, the load is connected to the input supply through the inductor.

(1)

(2) (3)

LM3017

Texas INSTRUMENTS

CURRENT LIMIT AND SHORT CIRCUIT PROTECTION

Boost Mode

In boost mode the LM3017 features both cycle-by-cycle current limit and short circuit protection. Unlike most boost regulators, the LM3017 can protect itself from short circuits on the output by shutting off the pass FET. The boost current limit, defined by V_{CL}=170mV in the electrical characteristics table, turns off the boost FET for normal overloads on a cycle-by-cycle basis. The current is limited to V_{CL}/R_{SEN} until the overload is removed. Should the output be shorted, or otherwise pulled below VIN, the inductor current will have a tendency to "runaway". This is prevented by the short circuit protection feature, defined as V_{SC} = 200mV in the electrical characteristics table. When this current limit is tripped, the current is limited to V_{SC}/R_{SEN} by controlling the pass FET. If the short persists for T_{SC} > 450µs the pass FET will be latched off. In this way, the current is limited to VSC/Rsen until the short is removed or the time of $T_{SC} = 450 \mu s$ is completed. Pulling the EN/MODE pin low (<0.4V, typ) is required to reset this short circuit latch-off mode. The delay of T_{SC} = 450µs helps to prevent nuisance latch-off during a momentary short on the output.

Standby Mode

In stand-by mode the power path is protected from shorts and overloads by the current limit defined as $V_{LIM1} = 85$ mV in the electrical characteristics table. When this current limit is tripped, the current is limited to V_{LIM1}/R_{SEN} by controlling the pass FET. If the short persists for $T_{LIM1} > 900\mu$ s the pass FET will be latched off. In this way, the current is limited to V_{LIM1}/R_{SEN} until the short is removed or the time of $T_{LIM1} = 900\mu$ s is completed. Pulling the EN/MODE pin low (<0.4V, typ) is required to reset this latch-off mode.

Start-up Stand-bye Mode

During start-up in stand-by mode, the current limit is defined by $V_{LIM2} = 100$ mV in the electrical characteristics table, for the first $T_{LIM2} = 3.6$ ms. The current is limited to V_{LIM2}/R_{SEN} , for this period . Once the $T_{LIM2} = 3.6$ ms timer has finished, the current limit is reduced to $V_{LIM1} = 85$ mV . For the first $T_{LIM2} = 3.6$ ms of the start-up, the latch-off feature is not enabled, however the current will always be limited to V_{LIM2}/R_{SEN} . This allows the part to start-up normally. If the current limit is still tripped at the end of $T_{LIM2} = 3.6$ ms, the $T_{LIM1} = 900$ µs time has expired, the pass FET is latched off. This gives a total current-limited time of $T_{LIM1} + T_{LIM2} = 4.5$ ms, in cases where the LM3017 is started into a short circuit at the output.

Start-up Boost Mode

During start-up in boost mode, the current limit is defined by $V_{LIM2} = 100$ mV (typ) in the electrical characteristics table, for the first $T_{LIM2} = 3.6$ ms. The current is limited to V_{LIM2}/R_{SEN} , for this period. Once the $T_{LIM2} = 3.6$ ms timer has finished, the current limit is increased to $V_{SC} = 200$ mV. For the first $T_{LIM2} = 3.6$ ms of the start-up, the latch-off feature is not enabled, however the current will always be limited to V_{LIM2}/R_{SEN} . This allows the part to start-up normally. If the current limit is still tripped at the end of $T_{LIM2} = 3.6$ ms, the $T_{SC} = 450$ µs time has expired, the pass FET is latched off. This gives a total current-limited time of $T_{SC} + T_{LIM2} = 4.05$ ms, in cases where the LM3017 is started into a short circuit at the output.

www.ti.com

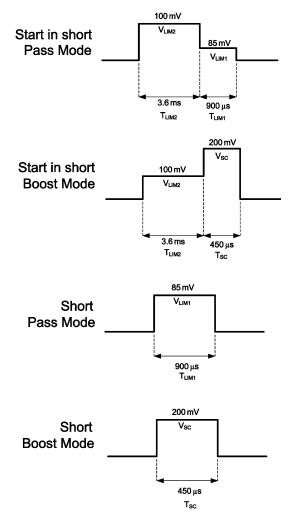


Figure 3. Current Limit / Short Circuit protection

OVER VOLTAGE PROTECTION

The LM3017 has over voltage protection (OVP) for the output voltage. OVP is sensed at the feedback pin (FB). If at anytime the voltage at the feedback pin rises to V_{FB} + V_{OVP}, OVP is triggered. See the electrical characteristics section for limits on V_{FB} and V_{OVP} .

OVP will cause the drive pin (DR) to go low, forcing the power MOSFET off. With the MOSFET off, the output voltage will drop. The LM3017 will begin switching again when the feedback voltage reaches V_{FB} + (V_{OVP} - $V_{OVP(HYS)}$). See the electrical characteristics section for limits on $V_{OVP(HYS)}$.

SLOPE COMPENSATION RAMP

The LM3017 uses a current mode control scheme. The main advantages of current mode control are inherent cycle-by-cycle current limit for the switch, simpler control loop characteristics and excellent line and load transient response. However there is a natural instability that will occur for duty cycles, D, greater than 50% if additional slope compensation is not addressed as described below.

$M_{\rm C} > M_2 / 2$	(4)
For the boost topology:	
$M_1 = [V_{IN} / L] \times R_{SEN} \times A$	(5)
$M_2 = [(V_{OUT} - V_{IN}) / L] \times R_{SEN} \times A$	(6)
M/hore	

Where:

- **M**_c is the slope of the compensation ramp.
- M₁ is the slope of the inductor current during the ON time.
- M₂ is the slope of the inductor current during the OFF time.
- R_{SEN} is the sensing resistor value.
- V_{OUT} represents the output voltage.
- V_{IN} represents the input voltage.
- A is equal to 0.86 and it is the internal sensing amplification of the LM3017.

The compensation ramp has been added internally in the LM3017. The slope of this compensation ramp has been selected to satisfy most applications, and its value depends on the switching frequency. This slope can be calculated using the formula:

$$M_{C} = V_{SL} \times f_{S}$$

(7)

In the above equation, V_{SL} is the amplitude of the internal compensation ramp and f_S is the controller's switching frequency. Limits for V_{SL} have been specified in the electrical characteristics section.

In order to provide the user additional flexibility, a patented scheme has been implemented inside the IC to increase the slope of the compensation ramp externally, if the need arises. Adding a single external resistor, R_S (as shown in Figure 5) increases the amplitude of the compensation ramp as shown in Figure 4.

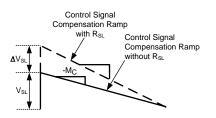


Figure 4. Additional Slope Compensation Added Using External Resistor Rs

Where,

$$\Delta V_{SL} = K \times R_S$$

 $K = 40 \ \mu A$ typically and changes slightly as the switching frequency changes.

A more general equation for the slope compensation ramp, M_C , is shown below to incluse ΔV_{SL} cause by the resistor R_S .

$$M_{\rm C} = (V_{\rm SL} + \Delta V_{\rm SL}) \times f_{\rm S}$$

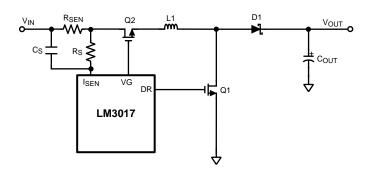


Figure 5. Increasing the Slope of the Compensation Ramp

(8)

(9)

www.ti.com

Application Circuits

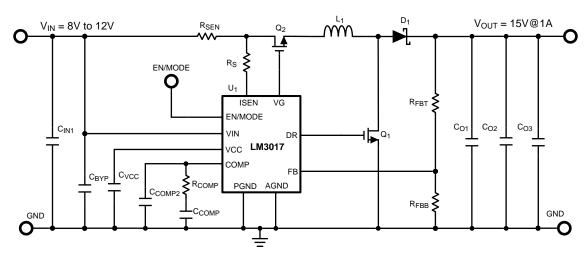


Figure 6. Typical High Efficiency Step-Up (Boost) Converter

Designation	Description	Size	Manufacturer Part #	Vendor
C _{IN1}	Cap 22µF 25V X5R	1206	GRM31CR61E226KE15L	Murata
C ₀₁ ,C ₀₂ , C ₀₃	Cap 22µF 25V X5R	1206	GRM31CR61E226KE15L	Murata
C _{COMP}	Cap 0.022µF	0603		
C _{COMP2}	Cap 1000pF	0603		
C _{BYP}	Cap 0.1µF 25V X7R	0603	06033C104KAT2A	AVX
C _{VCC}	Cap 0.47µF 16V X7R	0805	C2012X7R1C474K	TDK
R _{COMP}	RES, 10k ohm, 1%, 0.1W	0603	CRCW060310K0FKEA	Vishay
R _{FBT}	RES, 21.5k ohm, 1%, 0.1W	0603	CRCW060321K5FKEA	Vishay
R _{FBB}	RES, 2k ohm, 1%, 0.1W	0603	CRCW06032K00FKEA	Vishay
R _s	RES, 100 ohm, 1%, 0.1W	0603	CRCW0603100RFKEA	Vishay
R _{SEN}	RES, 0.03 ohm, 1%, 1W	1206	WSLP1206R0300FEA	Vishay
Q ₁	NexFET [™] N-CH, 25V, 60A, R _{DS(on)} = 4.4mohm	8-SON	CSD16323Q3	TI
Q ₂	NexFET [™] N-CH, 25V, 60A, R _{DS(on)} = 4.3mohm	8-SON	CSD16340Q3	TI
D ₁	Diode Schottky, 30V, 2A	SMB	20BQ030TRPBF	Vishay
L ₁	Shielded Inductor, 2.2µH, 3.4A	4.45mm L x 4.06mm W x 1.85mm H	MPI4040R3	Cooper
U ₁	LM3017			TI

Table 2. Bill of Materials (BOM)

31-May-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)		(3)		(4/5)	
LM3017LE/NOPB	PREVIEW	WQFN	NKL	10	1000	Green (RoHS & no Sb/Br)	SN	Level-3-260C- NOTCALC	-40 to 125	SK6B	
LM3017LEX/NOPB	PREVIEW	WQFN	NKL	10	4500	Green (RoHS & no Sb/Br)	SN	Level-3-260C- NOTCALC	-40 to 125	SK6B	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

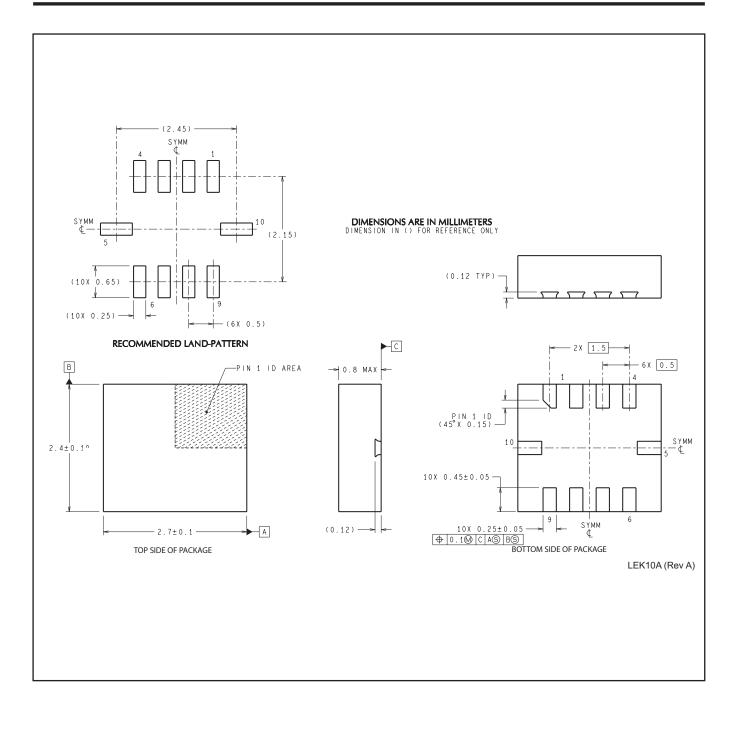
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NKL0010A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated