LM2936-5.0EP Enhanced Plastic Ultra-Low Quiescent Current 5V Regulator

Check for Samples: LM2936-5.0EP

FEATURES

- Ultra Low Quiescent Current ($\mathrm{I}_{\mathrm{Q}} \leq 15 \mu \mathrm{~A}$ for $\mathrm{I}_{\mathrm{O}}=\mathbf{1 0 0 \mu \mathrm { A }}$)
- Fixed 5V, 50 mA Output
- $\pm 2 \%$ Initial Output Tolerance
- $\pm 3 \%$ Output Tolerance Over Line, Load, and Temperature
- Dropout Voltage Typically 200 mV @ $\mathrm{I}_{\mathrm{O}}=50$ mA
- Reverse Battery Protection
- -50V Reverse Transient Protection
- Internal Short Circuit Current Limit
- Internal Thermal Shutdown Protection
- 40V Operating Voltage Limit
- 60V Operating Voltage Limit for LM2936HVEP
- Shutdown Pin Available with LM2936BMEP Package

APPLICATIONS

- Selected Military Applications
- Selected Avionics Applications

DESCRIPTION

The LM2936EP ultra-low quiescent current regulator features low dropout voltage and low current in the standby mode. With less than $15 \mu \mathrm{~A}$ quiescent current at a $100 \mu \mathrm{~A}$ load, the LM2936EP is ideally suited for automotive and other battery operated systems. The LM2936EP retains all of the features that are common to low dropout regulators including a low dropout PNP pass device, short circuit protection, reverse battery protection, and thermal shutdown. The LM2936EP has a 40V maximum operating voltage limit, $\mathrm{a}-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range, and $\pm 3 \%$ output voltage tolerance over the entire output current, input voltage, and temperature range. The LM2936EP is available in a TO-92 package, a SOIC-8 surface mount package, and a TO-252 surface mount power package.

ENHANCED PLASTIC

- Extended Temperature Performance of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Baseline Control - Single Fab \& Assembly Site
- Process Change Notification (PCN)
- Qualification \& Reliability Data
- Solder (PbSn) Lead Finish is Standard
- Enhanced Diminishing Manufacturing Sources (DMS) Support

TYPICAL APPLICATION

* Required if regulator is located more than 2 " from power supply filter capacitor.
** Required for stability. Must be rated for $10 \mu \mathrm{~F}$ minimum over intended operating temperature range. Effective series resistance (ESR) is critical, see curve. Locate capacitor as close as possible to the regulator output and ground pins. Capacitance may be increased without bound.

[^0]
CONNECTION DIAGRAMS

Figure 1. TO-252 (Top View) See Package Number NDP0003B

Figure 3. 8-Pin SOIC (D) (Top View) See Package Number D0008A

Figure 5. TO-92 (Bottom View)
See Package Number LP0003A

Figure 2. SOT-223 (Top View) See Package Number MA04A

Figure 4. 8-Pin SOIC (D) (Top View)
See Package Number D0008A

Figure 6. 8-Pin VSSOP (DGK) (Top View) See Package Number DGK0008A

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS
 (1)(2)

Input Voltage (Survival)	$+60 \mathrm{~V},-50 \mathrm{~V}$
ESD Susceptibility ${ }^{(3)}$	2000 V
Power Dissipation ${ }^{(4)}$	Internally limited
Junction Temperature $\left(T_{\text {Jmax }}\right)$	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
(3) Human body model, 100 pF discharge through a $1.5 \mathrm{k} \Omega$ resistor.
(4) The maximum power dissipation is a function of $T_{J \max }, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J \max }-T_{A}\right) / \theta_{J A}$. If this dissipation is exceeded, the die temperature will rise above $150^{\circ} \mathrm{C}$ and the LM 2936 EP will go into thermal shutdown.

OPERATING RATINGS

Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Operating Input Voltage - LM2936EP	+40 V
Maximum Operating Input Voltage - LM2936HVEP only	+60 V
Maximum Shutdown Pin Voltage - LM2936BMEP only	0 V to 40 V
TO-92 (LP0003A) θ_{JA}	$195^{\circ} \mathrm{C} / \mathrm{W}$
VSSOP-8 (DGK0008A) $\theta_{\text {JA }}$	$200^{\circ} \mathrm{C} / \mathrm{W}$
SOIC-8 (D0008A) $\theta_{\text {JA }}$	$140^{\circ} \mathrm{C} / \mathrm{W}$
SOIC-8 (D0008A) $\theta_{\text {JC }}$	$45^{\circ} \mathrm{C} / \mathrm{W}$
TO-252 (NDP0003B) $\theta_{\text {JA }}$	$136^{\circ} \mathrm{C} / \mathrm{W}$
TO-252 (NDP0003B) $\theta_{\text {JC }}$	$6^{\circ} \mathrm{C} / \mathrm{W}$
SOT-223 (MA04A) $\theta_{\text {JA }}$	$149^{\circ} \mathrm{C} / \mathrm{W}$
SOT-223 (MA04A) $\theta_{\text {JC }}$	$36^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise specified. Boldface limits apply over entire operating temperature range

Parameter	Conditions	Min ${ }^{(1)}$	Typical ${ }^{(2)}$	Max ${ }^{(1)}$	Units
LM2936HVEP Only					
Output Voltage	$\begin{aligned} & 5.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN} \leq 48 \mathrm{~V},} \\ & 100 \mu \mathrm{I} \leq \mathrm{I}_{\mathrm{O}} \leq 50 \mathrm{~mA} \end{aligned}$	4.85	5.00	5.15	V
Line Regulation	$6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$		15	35	mV
All LM2936EP					
Output Voltage		4.90	5.00	5.10	V
	$\begin{aligned} & 5.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}_{1}} \leq 26 \mathrm{~V}, \\ & 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{O}} \leq 50 \mathrm{~mA} \end{aligned}$	4.85	5.00	5.15	
Quiescent Current	$\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 24 \mathrm{~V}$		9	15	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 24 \mathrm{~V}$		0.20	0.50	mA
	$\mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 24 \mathrm{~V}$		1.5	2.5	mA
Line Regulation	$9 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 16 \mathrm{~V}$		5	10	mV
	$6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$		10	30	
Load Regulation	$100 \mu \mathrm{~A} \leq \mathrm{l}_{\mathrm{O}} \leq 5 \mathrm{~mA}$		10	30	mV
	$5 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 50 \mathrm{~mA}$		10	30	
Dropout Voltage	$\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0.05	0.10	V
	$\mathrm{l}_{\mathrm{O}}=50 \mathrm{~mA}$		0.20	0.40	V
Short Circuit Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	65	120	250	mA
Output Impedance	$\mathrm{I}_{\mathrm{O}}=30 \mathrm{mAdc}$ and 10 mArms , $\mathrm{f}=1000 \mathrm{~Hz}$		450		$\mathrm{m} \Omega$
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$		500		$\mu \mathrm{V}$
Long Term Stability			20		$\mathrm{mV} / 1000 \mathrm{Hr}$
Ripple Rejection	$\mathrm{V}_{\text {ripple }}=1 \mathrm{~V}_{\text {rms }}$, fripple $=120 \mathrm{~Hz}$	-40	-60		dB
Reverse Polarity Transient Input Voltage	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~T}=1 \mathrm{~ms}$	-50	-80		V
Output Voltage with Reverse Polarity Input	$\mathrm{V}_{\mathrm{IN}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$		0.00	-0.30	V
Maximum Line Transient	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}, \mathrm{~T}=40 \mathrm{~ms}$	60			V
Output Bypass Capacitance (Cout) ESR	$\begin{aligned} & \mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F} \\ & 0.1 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 50 \mathrm{~mA} \end{aligned}$	0.3		8	Ω
Shutdown Input - LM2936BMEP Only					
Output Voltage, $\mathrm{V}_{\text {OUT }}$	Output Off, $\mathrm{V}_{\text {SD }}=2.4 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=500 \Omega$		0	0.010	V
Shutdown High Threshold Voltage, V_{IH}	Output Off, R ${ }_{\text {LOAD }}=500 \Omega$	2.00	1.1		V
Shutdown Low Threshold Voltage, VIL	Output On, $\mathrm{R}_{\text {LOAD }}=500 \Omega$		1.1	0.60	V
Shutdown High Current, I_{I}	Output Off, $\mathrm{V}_{\text {SD }}=2.4 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=500 \Omega$		12		$\mu \mathrm{A}$
Quiescent Current	Output Off, $\mathrm{V}_{\mathrm{SD}}=2.4 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=500 \Omega$ Includes $\mathrm{I}_{\mathrm{IH} \mathrm{Current}}$		30		$\mu \mathrm{A}$

(1) Data sheet \min / \max specification limits are ensured by design, test, or statistical analysis.
(2) Typicals are at $25^{\circ} \mathrm{C}$ (unless otherwise specified) and represent the most likely parametric norm.
(3) To ensure constant junction temperature, pulse testing is used.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9.

Figure 11.
Figure 10.

Figure 12.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 13.

Figure 15.

Figure 17.

Figure 14.

input voltage (V)
Figure 16.

Figure 18.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Line Transient Response

Time (ms)
Figure 19.

Figure 21.

Figure 23.

infut voltage (V)
Figure 20.

Figure 22.

APPLICATIONS INFORMATION

Unlike other PNP low dropout regulators, the LM2936EP remains fully operational to 40V. Owing to power dissipation characteristics of the available packages, full output current cannot be ensured for all combinations of ambient temperature and input voltage. As an example, consider an LM2936ZEP operating at $25^{\circ} \mathrm{C}$ ambient. Using the formula for maximum allowable power dissipation (see ${ }^{(1)}$), we find that $P_{\text {Dmax }}=641 \mathrm{~mW}$ at $25^{\circ} \mathrm{C}$. Including the small contribution of the quiescent current to total power dissipation the maximum input voltage (while still delivering 50 mA output current) is 17.3 V . The LM2936ZEP will go into thermal shutdown if it attempts to deliver full output current with an input voltage of more than 17.3 V . Similarly, at 40 V input and $25^{\circ} \mathrm{C}$ ambient the LM2936ZEP can deliver 18 mA maximum.

Under conditions of higher ambient temperatures, the voltage and current calculated in the previous examples will drop. For instance, at the maximum ambient of $125^{\circ} \mathrm{C}$ the LM2936ZEP can only dissipate 128 mW , limiting the input voltage to 7.34 V for a 50 mA load, or 3.5 mA output current for a 40 V input.
The junction to ambient thermal resistance θ_{JA} rating has two distinct components: the junction to case thermal resistance rating θ_{JC}; and the case to ambient thermal resistance rating θ_{CA}. The relationship is defined as: $\theta_{\mathrm{JA}}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}$.
For the SOIC-8 and TO-252 surface mount packages the $\theta_{\text {JA }}$ rating can be improved by using the copper mounting pads on the printed circuit board as a thermal conductive path to extract heat from the package.
On the SOIC-8 package the four ground pins are thermally connected to the backside of the die. Adding approximately 0.04 square inches of 2 oz . copper pad area to these four pins will improve the θ_{JA} rating to approximately $110^{\circ} \mathrm{C} / \mathrm{W}$. If this extra pad are is placed directly beneath the package there should not be any impact on board density.
On the TO-252 package the ground tab is thermally connected to the backside of the die. Adding 1 square inch of 2 oz. copper pad area directly under the ground tab will improve the θ_{JA} rating to approximately $50^{\circ} \mathrm{C} / \mathrm{W}$.
While the LM2936EP has an internally set thermal shutdown point of typically $150^{\circ} \mathrm{C}$, this is intended as a safety feature only. Continuous operation near the thermal shutdown temperature should be avoided as it may have a negative affect on the life of the device.
While the LM2936EP maintains regulation to 60 V , it will not withstand a short circuit above 40V because of safe operating area limitations in the internal PNP pass device. Above 60V the LM2936EP will break down with catastrophic effects on the regulator and possibly the load as well. Do not use this device in a design where the input operating voltage may exceed 40 V , or where transients are likely to exceed 60 V .

SHUTDOWN PIN

The LM2936BMEP has a pin for shutting down the regulator output. Applying a Logic Level High (>2.0V) to the Shutdown pin will cause the output to turn off. Leaving the Shutdown pin open, connecting it to Ground, or applying a Logic Level Low (<0.6V) will allow the regulator output to turn on.
(1) The maximum power dissipation is a function of $T_{J \max }, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J \max }-T_{A}\right) / \theta_{J A}$. If this dissipation is exceeded, the die temperature will rise above $150^{\circ} \mathrm{C}$ and the LM 2936 EP will go into thermal shutdown.

EQUIVALENT SCHEMATIC DIAGRAM

REVISION HISTORY

- Changed layout of National Data Sheet to TI format 9

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

