OBSOLETE

www.ti.com

LM2672EP Enhanced Plastic SIMPLE SWITCHER[®] Power Converter High Efficiency 1A Step-Down Voltage Regulator with Features

Check for Samples: LM2672EP

FEATURES

- Efficiency up to 96%
- Available in SOIC-8, 8-Pin PDIP and WSON Packages
- Computer Design Software LM267X Made Simple Version 6.0
- Simple and Easy to Design with
- **Requires only 5 External Components**
- **Uses Readily available Standard Inductors**
- 3.3V, 5.0V, 12V, and Adjustable Output Versions
- Adjustable Version Output Voltage Range: 1.21V to 37V
- ±1.5% Max Output Voltage Tolerance over Line and Load Conditions
- **Ensured 1A Output Load Current**
- 0.25Ω DMOS Output Switch •
- Wide Input Voltage Range: 8V to 40V
- 260 kHz Fixed Frequency Internal Oscillator
- TTL Shutdown Capability, Low Power Standby Mode
- Soft-Start and Frequency Synchronization
- **Thermal Shutdown and Current Limit** Protection

TYPICAL APPLICATIONS

- Simple High Efficiency (>90%) Step-Down (Buck) Regulator
- **Efficient Pre-Regulator for Linear Regulators**
- Selected Military Applications
- Selected Avionics Applications

DESCRIPTION

The LM2672EP series of regulators are monolithic integrated circuits built with a LMDMOS process. These regulators provide all the active functions for a step-down (buck) switching regulator, capable of driving a 1A load current with excellent line and load regulation. These devices are available in fixed output voltages of 3.3V, 5.0V, 12V, and an adjustable output version.

Requiring minimum number of external а components, these regulators are simple to use and include patented internal frequency compensation (Patent Nos. 5,382,918 and 5,514,947), fixed frequency oscillator, external shutdown, soft-start, and frequency synchronization.

The LM2672EP series operates at a switching frequency of 260 kHz, thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Because of its very high efficiency (>90%), the copper traces on the printed circuit board are the only heat sinking needed.

A family of standard inductors for use with the LM2672EP are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies using these advanced ICs. Also included in the datasheet are selector guides for diodes and capacitors designed to work in switch-mode power supplies.

Other features include a specified ±1.5% tolerance on output voltage within specified input voltages and output load conditions, and ±10% on the oscillator frequency. External shutdown is included, featuring typically 50 µA stand-by current. The output switch includes current limiting, as well as thermal shutdown for full protection under fault conditions.

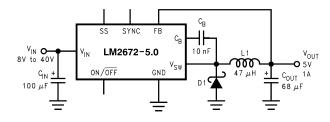
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SIMPLE SWITCHER is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

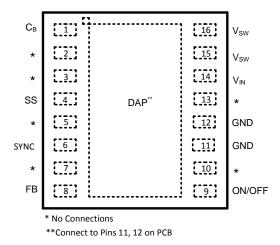
LM2672EP

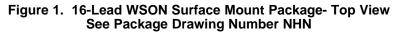
www.ti.com

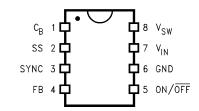
DESCRIPTION (CONTINUED...)


To simplify the LM2672EP buck regulator design procedure, there exists computer design software, *LM267X Made Simple* version 6.0.

ENHANCED PLASTIC


- Extended Temperature Performance of −40°C to +125°C
- Baseline Control Single Fab & Assembly Site
- Process Change Notification (PCN)
- Qualification & Reliability Data
- Solder (PbSn) Lead Finish is Standard
- Enhanced Diminishing Manufacturing Sources (DMS) Support


TYPICAL APPLICATION


(Fixed Output Voltage Versions)

Connection Diagram

SNVS279C - MAY 2004 - REVISED APRIL 2013

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage			45V
ON/OFF Pin Voltage			$-0.1V \le V_{SH} \le 6V$
Switch Voltage to Ground			-1V
Boost Pin Voltage			V _{SW} + 8V
Feedback Pin Voltage			−0.3V ≤ V _{FB} ≤ 14V
ESD Susceptibility		Human Body Model (2)	2 kV
Power Dissipation			Internally Limited
Storage Temperature Range			-65°C to +150°C
Lead Temperature	D Package	Vapor Phase (60s)	+215°C
		Infrared (15s)	+220°C
	P Package (Soldering, 10s)	+260°C	
WSON Package (see AN-1187)			
Maximum Junction Temperature			+150°C

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but device parameter specifications may not be ensured under these conditions. For ensured specifications and test conditions, see the Electrical Characteristics.

(2) The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin.

OPERATING RATINGS

Supply Voltage	6.5V to 40V
Temperature Range	$-40^{\circ}C \le T_{J} \le +125^{\circ}C$

ELECTRICAL CHARACTERISTICS LM2672-3.3EP

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those in **bold type face** apply over **full Operating Temperature Range**.

Symbol	Parameter	Conditions	Typical ⁽¹⁾	Min ⁽²⁾	Max ⁽²⁾	Units
SYSTEM PARAMETERS Test Circuit Figure 21 ⁽³⁾						
V _{OUT}	Output Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A	3.3	3.251/ 3.201	3.350/ 3.399	V
V _{OUT}	Output Voltage	V_{IN} = 6.5V to 40V, I_{LOAD} = 20 mA to 500 mA	3.3	3.251/ 3.201	3.350/ 3.399	V
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 1A$	86			%

(1) Typical numbers are at 25°C and represent the most likely norm.

(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator performance. When the LM2672EP is used as shown in Figure 21 and Figure 22 test circuits, system performance will be as specified by the system parameters section of the Electrical Characteristics.

SNVS279C-MAY 2004-REVISED APRIL 2013

LM2672-5.0EP

Symbol	Parameter	Conditions	Typical ⁽¹⁾	Min ⁽²⁾	Max ⁽²⁾	Units		
SYSTEM	PARAMETERS Test	t Circuit Figure 21 ⁽³⁾						
V _{OUT}	Output Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A	5.0	4.925/ 4.850	5.075/ 5.150	V		
V _{OUT}	Output Voltage	V_{IN} = 6.5V to 40V, I_{LOAD} = 20 mA to 500 mA	5.0	4.925/ 4.850	5.075/ 5.150	V		
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 1A$	90			%		

(1) Typical numbers are at 25°C and represent the most likely norm.

(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator performance. When the LM2672EP is used as shown in Figure 21 and Figure 22 test circuits, system performance will be as specified by the system parameters section of the Electrical Characteristics.

LM2672-12EP

Symbol	Parameter	Conditions	Typical (1)	Min ⁽²⁾	Max ⁽²⁾	Units		
SYSTEM	SYSTEM PARAMETERS Test Circuit Figure 21 ⁽³⁾							
V _{OUT}	Output Voltage	V_{IN} = 15V to 40V, I_{LOAD} = 20 mA to 1A	12	11.82/ 11.64	12.18/ 12.36	V		
η	Efficiency	$V_{IN} = 24V, I_{LOAD} = 1A$	94			%		

(1) Typical numbers are at 25°C and represent the most likely norm.

(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator performance. When the LM2672EP is used as shown in Figure 21 and Figure 22 test circuits, system performance will be as specified by the system parameters section of the Electrical Characteristics.

LM2672-ADJEP

Symbol	Parameter	Conditions	Тур ⁽¹⁾	Min ⁽²⁾	Max ⁽²⁾	Units
SYSTEM	PARAMETERS Test	t Circuit Figure 22 ⁽³⁾				
V _{FB}	Feedback Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A	1.210	1.192/ 1.174	1.228/ 1.246	V
		V _{OUT} Programmed for 5V				
		(see Circuit of Figure 22)				
V _{FB}	Feedback Voltage	V_{IN} = 6.5V to 40V, I_{LOAD} = 20 mA to 500 mA	1.210	1.192/ 1.174	1.228/ 1.246	V
		V _{OUT} Programmed for 5V				
		(see Circuit of Figure 22)				
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 1A$	90			%

(1) Typical numbers are at 25°C and represent the most likely norm.

(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator performance. When the LM2672EP is used as shown in Figure 21 and Figure 22 test circuits, system performance will be as specified by the system parameters section of the Electrical Characteristics.

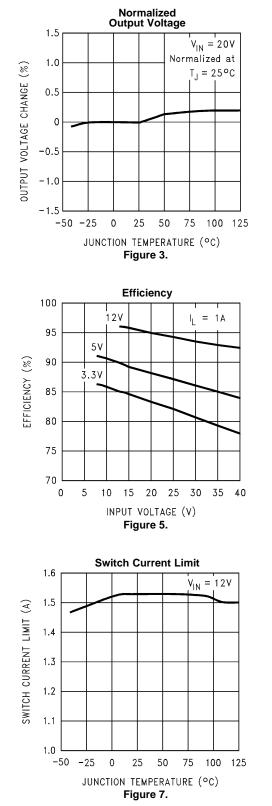
SNVS279C - MAY 2004 - REVISED APRIL 2013

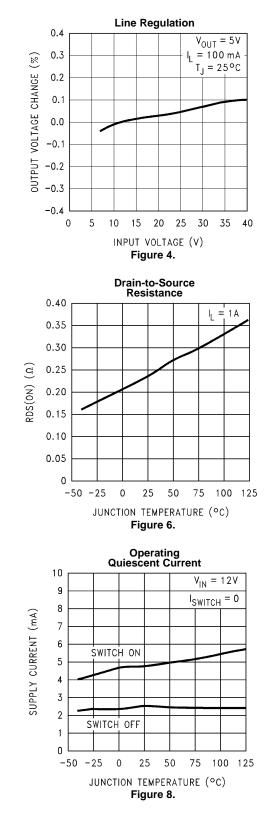
www.ti.com

ALL OUTPUT VOLTAGE VERSIONS

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those in **bold type face** apply over **full Operating Temperature Range**. Unless otherwise specified, $V_{IN} = 12$ V for the 3.3V, 5V, and Adjustable versions and $V_{IN} = 24$ V for the 12V version, and $I_{LOAD} = 100$ mA.

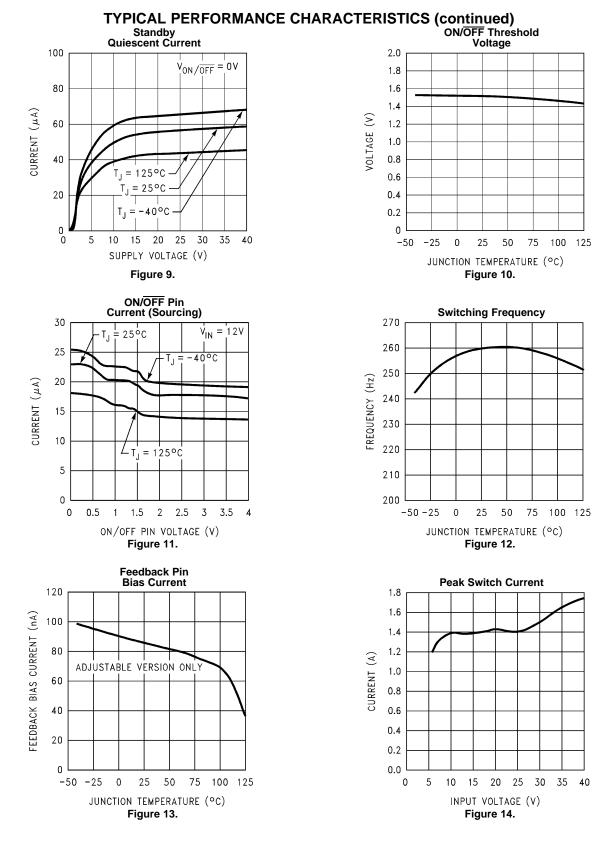
Symbol	Parameters	Conditions	Тур	Min	Max	Units
DEVICE I	PARAMETERS		L.			
l _Q	Quiescent Current	V _{FEEDBACK} = 8V	2.5		3.6	mA
		For 3.3V, 5.0V, and ADJ Versions				
		V _{FEEDBACK} = 15V	2.5			mA
		For 12V Versions				
I _{STBY}	Standby Quiescent Current	ON/OFF Pin = 0V	50		100/ 150	μA
I _{CL}	Current Limit		1.55	1.25/ 1.2	2.1/ 2.2	А
IL	Output Leakage Current	$V_{IN} = 40V, ON/\overline{OFF}$ Pin = 0V	1		25	μA
		V _{SWITCH} = 0V				
		$V_{SWITCH} = -1V$, ON/OFF Pin = 0V	6		15	mA
R _{DS(ON)}	Switch On-Resistance	I _{SWITCH} = 1A	0.25		0.30/ 0.50	Ω
fo	Oscillator Frequency	Measured at Switch Pin	260	225	275	kHz
D	Maximum Duty Cycle		95			%
	Minimum Duty Cycle		0			%
I _{BIAS}	Feedback Bias	V _{FEEDBACK} = 1.3V	85			nA
	Current	ADJ Version Only				
V _{S/D}	ON/OFF Pin		1.4	0.8	2.0	V
	Voltage Thresholds					
I _{S/D}	ON/OFF Pin Current	ON/OFF Pin = 0V	20	7	37	μA
F _{SYNC}	Synchronization Frequency	V _{SYNC} = 3.5V, 50% duty cycle	400			kHz
V _{SYNC}	Synchronization Threshold Voltage		1.4			V
V _{SS}	Soft-Start Voltage		0.63	0.53	0.73	V
I _{SS}	Soft-Start Current		4.5	1.5	6.9	μA
θ_{JA}	Thermal Resistance	P Package, Junction to Ambient ⁽¹⁾	95			°C/W
		D Package, Junction to Ambient ⁽¹⁾	105			

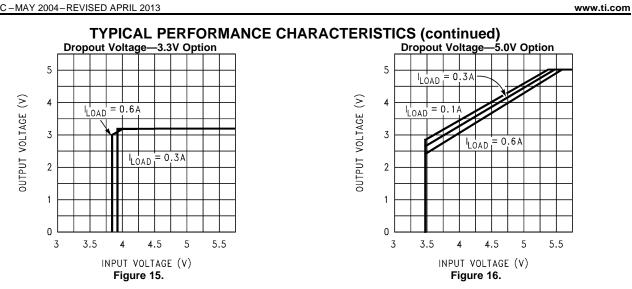

(1) Junction to ambient thermal resistance with approximately 1 square inch of printed circuit board copper surrounding the leads. Additional copper area will lower thermal resistance further. See Application Information section in the application note accompanying this datasheet and the thermal model in *LM267X Made Simple* version 6.0 software. The value θ_{J-A} for the WSON (NHN) package is specifically dependent on PCB trace area, trace material, and the number of layers and thermal vias. For improved thermal resistance and power dissipation for the WSON package, refer to Application Note AN-1187.



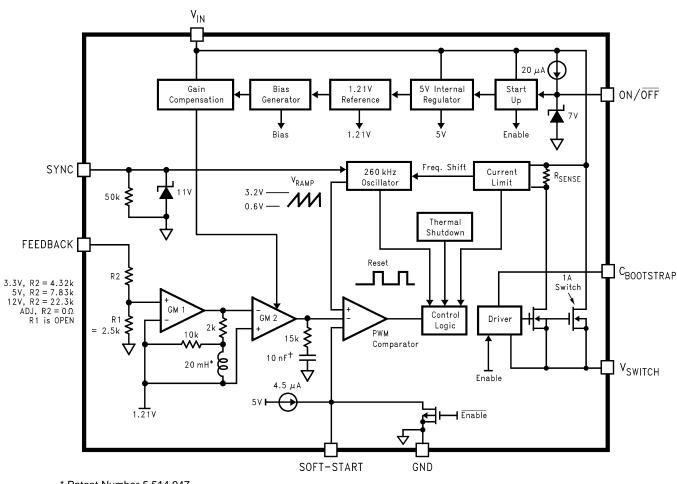
SNVS279C-MAY 2004-REVISED APRIL 2013

www.ti.com




SNVS279C-MAY 2004-REVISED APRIL 2013

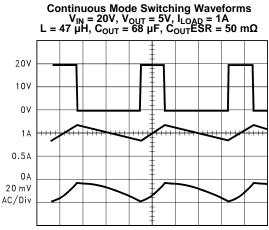
LM2672EP



SNVS279C-MAY 2004-REVISED APRIL 2013

SNVS279C - MAY 2004 - REVISED APRIL 2013

* Patent Number 5,514,947

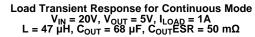

† Patent Number 5,382,918

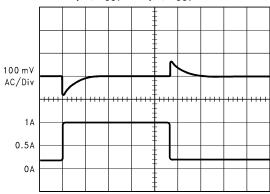
TEXAS INSTRUMENTS

SNVS279C-MAY 2004-REVISED APRIL 2013

TEST CIRCUIT AND LAYOUT GUIDELINES

(Circuit of Figure 21)




A: V_{SW} Pin Voltage, 10 V/div.

B: Inductor Current, 0.5 A/div

C: Output Ripple Voltage, 20 mV/div AC-Coupled

Figure 17. Horizontal Time Base: 1 µs/div

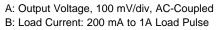
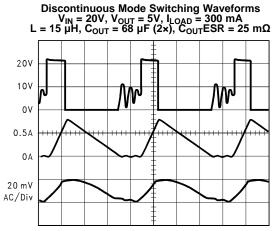
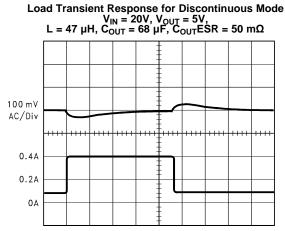



Figure 19. Horizontal Time Base: 50 µs/div



A: V_{SW} Pin Voltage, 10 V/div.

B: Inductor Current, 0.5 A/div

C: Output Ripple Voltage, 20 mV/div AC-Coupled

Figure 18. Horizontal Time Base: 1 µs/div

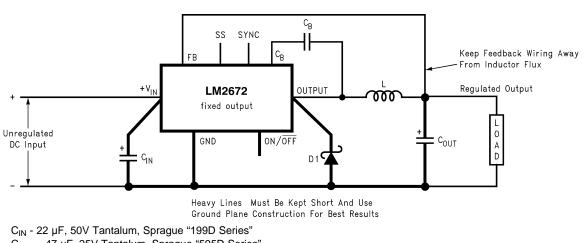
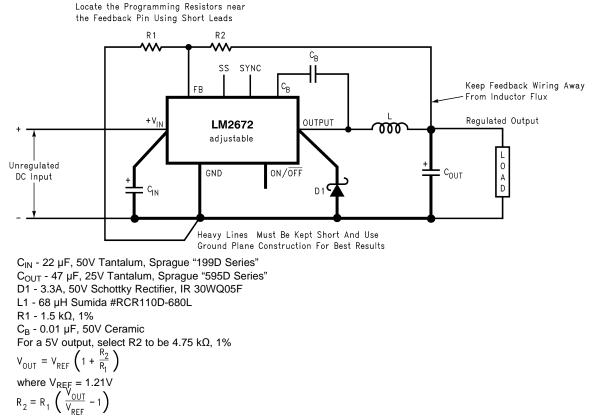
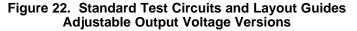

A: Output Voltage, 100 mV/div, AC-Coupled B: Load Current: 100 mA to 300 mA Load Pulse

Figure 20. Horizontal Time Base: 200 µs/div

www.ti.com


(Circuit of Figure 21)


 C_{IN} - 22 µF, 50V rantalum, Sprague 199D Series C_{OUT} - 47 µF, 25V Tantalum, Sprague "595D Series" D1 - 3.3A, 50V Schottky Rectifier, IR 30WQ05F L1 - 68 µH Sumida #RCR110D-680L

 $C_B - 0.01 \mu F$, 50V Ceramic

Use a 1% resistor for best stability.

SNVS279C - MAY 2004 - REVISED APRIL 2013

www.ti.com

LM2672EP SERIES BUCK REGULATOR DESIGN PROCEDURE (FIXED OUTPUT)

PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
To simplify the buck regulator design procedure, National Semiconductor is making available computer design software to be used with the SIMPLE SWITCHER [®] line of switching regulators. LM267X Made Simple version 6.0 is available on Windows [®] 3.1, NT, or 95 operating systems.	
Given:	Given:
V _{OUT} = Regulated Output Voltage (3.3V, 5V, or 12V)	V _{OUT} = 5V
V _{IN} (max) = Maximum DC Input Voltage	V _{IN} (max) = 12V
I _{LOAD} (max) = Maximum Load Current	$I_{LOAD}(max) = 1A$
 Inductor Selection (L1) A. Select the correct inductor value selection guide from Figure 23 and Figure 24 or Figure 25 (output voltages of 3.3V, 5V, or 12V respectively). For all other voltages, see the design procedure for the adjustable version. 	 Inductor Selection (L1) Use the inductor selection guide for the 5V version shown in Figure 24.
B. From the inductor value selection guide, identify the inductance region intersected by the Maximum Input Voltage line and the Maximum Load Current line. Each region is identified by an inductance value and an inductor code (LXX).	B. From the inductor value selection guide shown in Figure 24, the inductance region intersected by the 12V horizontal line and the 1A vertical line is 33 μ H, and the inductor code is L23.
C. Select an appropriate inductor from the four manufacturer's part numbers listed in Table 1. Each manufacturer makes a different style of inductor to allow flexibility in meeting various design requirements. Listed below are some of the differentiating characteristics of each manufacturer's inductors:	C. The inductance value required is 33 μ H. From the table in Table 1, go to the L23 line and choose an inductor part number from any of the four manufacturers shown. (In most instances, both through hole and surface mount inductors are available.)
Schott: ferrite EP core inductors; these have very low leakage magnetic fields to reduce electro-magnetic interference (EMI) and are the lowest power loss inductors	
<i>Renco:</i> ferrite stick core inductors; benefits are typically lowest cost inductors and can withstand E•T and transient peak currents above rated value. Be aware that these inductors have an external magnetic field which may generate more EMI than other types of inductors.	
<i>Pulse:</i> powered iron toroid core inductors; these can also be low cost and can withstand larger than normal E•T and transient peak currents. Toroid inductors have low EMI.	
<i>Coilcraft:</i> ferrite drum core inductors; these are the smallest physical size inductors, available only as SMT components. Be aware that these inductors also generate EMI—but less than stick inductors.	
Complete specifications for these inductors are available from the respective manufacturers. A table listing the manufacturers' phone numbers is located in Table 2.	
2. Output Capacitor Selection (C_{OUT}) A. Select an output capacitor from the output capacitor table in Table 3. Using the output voltage and the inductance value found in the inductor selection guide, step 1, locate the appropriate capacitor value and voltage rating.	2. Output Capacitor Selection (C_{OUT}) A. Use the 5.0V section in the output capacitor table in Table 3. Choose a capacitor value and voltage rating from the line that contains the inductance value of 33 μ H. The capacitance and voltage rating values corresponding to the 33 μ H
The capacitor list contains through-hole electrolytic capacitors from four different capacitor manufacturers and surface mount tantalum capacitors from two different capacitor manufacturers. It is recommended that both the manufacturers and the manufacturer's series that are listed in the table be used. A table listing the manufacturers' phone numbers is located in Table 4.	Surface Mount:68 μF/10VSprague 594D Series.100 μF/10VAVX TPS Series.Through Hole:68 μF/10V68 μF/10VSanyo OS-CON SA Series.220 μF/35VSanyo MV-GX Series.220 μF/35VNichicon PL Series.220 μF/35VPanasonic HFQ Series.

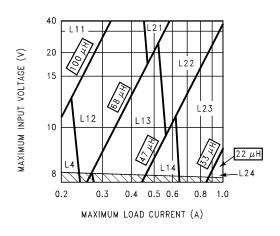
SNVS279C - MAY 2004 - REVISED APRIL 2013
31103279C -10AT 2004-REVISED AFRIC 2013

PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
 3. Catch Diode Selection (D1) A. In normal operation, the average current of the catch diode is the load current times the catch diode duty cycle, 1-D (D is the switch duty cycle, which is approximately the output voltage divided by the input voltage). The largest value of the catch diode average current occurs at the maximum load current and maximum input voltage (minimum D). For normal operation, the catch diode current rating must be at least 1.3 times greater than its maximum average current. However, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2672EP. The most stressful condition for this diode is a shorted output condition. B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage. C. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency. 	3. Catch Diode Selection (D1) A. Refer to the table shown in Table 5. In this example, a 1A, 20V Schottky diode will provide the best performance. If the circuit must withstand a continuous shorted output, a higher current Schottky diode is recommended.
This Schottky diode must be located close to the LM2672EP using short leads and short printed circuit traces.	A lanut Conceitor (C.)
4. Input Capacitor (C _{IN}) A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground to prevent large voltage transients from appearing at the input. This capacitor should be located close to the IC using short leads. In addition, the RMS current rating of the input capacitor should be selected to be at least ½ the DC load current. The capacitor manufacturer data sheet must be checked to assure that this current rating is not exceeded. The curves shown in Figure 27 show typical RMS current ratings for several different aluminum electrolytic capacitor values. A parallel connection of two or more capacitors may be required to increase the total minimum RMS current rating to suit the application requirements. For an aluminum electrolytic capacitor, the voltage rating should be at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating should be twice the maximum input voltage. The tables in Table 7 show the recommended application voltage for AVX TPS and Sprague 594D tantalum capacitors. It is also recommended that they be surge current tested by the manufacturer. The TPS series available from AVX, and the 593D and 594D series from Sprague are all surge current tested. Another approach to minimize the surge current stresses on the input capacitor is to add a small inductor in series with the input supply line. Use caution when using ceramic capacitors for input bypassing, because it may cause severe ringing at the V _{IN} pin.	4. Input Capacitor (C _{IN}) The important parameters for the input capacitor are the input voltage rating and the RMS current rating. With a maximum input voltage rating and the RMS current rating. With a maximum input voltage of 12V, an aluminum electrolytic capacitor with a voltage rating greater than 15V ($1.25 \times V_{IN}$) would be needed. The next higher capacitor voltage rating is 16V. The RMS current rating requirement for the input capacitor in a buck regulator is approximately ½ the DC load current. In this example, with a 1A load, a capacitor with a RMS current rating of at least 500 mA is needed. The curves shown in Figure 27 can be used to select an appropriate input capacitor. From the curves, locate the 16V line and note which capacitor values have RMS current ratings greater than 500 mA. For a through hole design, a 330 µF/16V electrolytic capacitor (Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate. Additionally, for a complete surface mount design, electrolytic capacitors such as the Sanyo CV-C or CV-BS and the Nichicon WF or UR and the NIC Components NACZ series could be considered. For surface mount designs, solid tantalum capacitors can be used, but caution must be exercised with regard to the capacitor surge current rating and voltage rating. In this example, checking Table 7, and the Sprague 594D series datasheet, a Sprague 594D 15 µF, 25V capacitor is adequate.
5. Boost Capacitor (C_B) This capacitor develops the necessary voltage to turn the switch gate on fully. All applications should use a 0.01 μ F, 50V ceramic capacitor.	5. Boost Capacitor (C _B) For this application, and all applications, use a 0.01 $\mu\text{F},$ 50V ceramic capacitor.
6. Soft-Start Capacitor (C_{SS} - optional) This capacitor controls the rate at which the device starts up. The formula for the soft-start capacitor C_{SS} is:	6. Soft-Start Capacitor (C_{SS} - optional) For this application, selecting a start-up time of 10 ms and using the formula for C_{SS} results in a value of:
$C_{SS} \approx (I_{SS} \cdot t_{SS}) / [V_{SSTH} + 2.6V \cdot (\frac{V_{OUT} + V_{SCHOTTKY}}{V_{IN}})]$	$C_{SS} \approx (4.5 \ \mu A \cdot 10 \ ms) / [0.63V + 2.6V \cdot (\frac{5V + 0.4V}{12V})]$
where	= 25 nF ≈ 0.022 μ F. (2)
• I _{SS} = Soft-Start Current :4.5 μA typical	
 t_{SS} = Soft-Start Time :Selected 	
 V_{SSTH} = Soft-Start Threshold Voltage :0.63V typical 	
 Voltage .0.03V typical V_{OUT} = Output Voltage :Selected 	
 V_{SCHOTTKY} = Schottky Diode Voltage Drop :0.4V typical 	
• V_{IN} = Input Voltage :Selected (1)	
If this feature is not desired, leave this pin open.	

SNVS279C-MAY 2004-REVISED APRIL 2013

www.ti.com

PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
7. Frequency Synchronization (optional) The LM2672EP (oscillator) can be synchronized to run with an external oscillator, using the sync pin (pin 3). By doing so, the LM2672EP can be operated at higher frequencies than the standard frequency of 260 kHz. This allows for a reduction in the size of the inductor and output capacitor. As shown in the drawing below, a signal applied to a RC filter at the sync pin causes the device to synchronize to the frequency of that signal. For a signal with a peak-to-peak amplitude of 3V or greater, a 1 k Ω resistor and a 100 pF capacitor are suitable values.	7. Frequency Synchronization (optional) For all applications, use a 1 kΩ resistor and a 100 pF capacitor for the RC filter.



LM2672EP

www.ti.com

INDUCTOR VALUE SELECTION GUIDES

(For Continuous Mode Operation)

Figure 23. LM2672-3.3EP

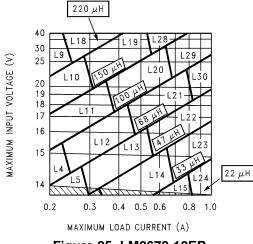


Figure 25. LM2672-12EP

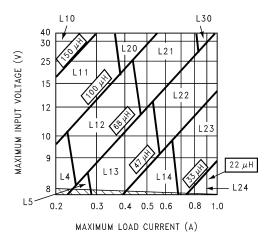


Figure 24. LM2672-5.0EP

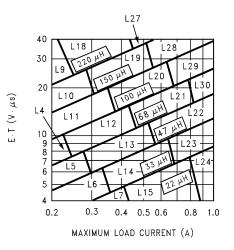


Figure 26. LM2672-ADJEP

Ind		_	Schott		Reno	Renco		ingineering	Coilcraft
Ref.	Inductance (µH)	Current (A)	Through	Surface	Through	Surface	Through	Surface	Surface
Desg.	Desg.	(~)	Hole	Mount	Hole	Mount	Hole	Mount	Mount
L4	68	0.32	67143940	67144310	RL-1284-68-43	RL1500-68	PE-53804	PE-53804-S	DO1608-683
L5	47	0.37	67148310	67148420	RL-1284-47-43	RL1500-47	PE-53805	PE-53805-S	DO1608-473
L6	33	0.44	67148320	67148430	RL-1284-33-43	RL1500-33	PE-53806	PE-53806-S	DO1608-333
L7	22	0.52	67148330	67148440	RL-1284-22-43	RL1500-22	PE-53807	PE-53807-S	DO1608-223
L9	220	0.32	67143960	67144330	RL-5470-3	RL1500-220	PE-53809	PE-53809-S	DO3308-224
L10	150	0.39	67143970	67144340	RL-5470-4	RL1500-150	PE-53810	PE-53810-S	DO3308-154
L11	100	0.48	67143980	67144350	RL-5470-5	RL1500-100	PE-53811	PE-53811-S	DO3308-104
L12	68	0.58	67143990	67144360	RL-5470-6	RL1500-68	PE-53812	PE-53812-S	DO3308-683
L13	47	0.70	67144000	67144380	RL-5470-7	RL1500-47	PE-53813	PE-53813-S	DO3308-473
L14	33	0.83	67148340	67148450	RL-1284-33-43	RL1500-33	PE-53814	PE-53814-S	DO3308-333
L15	22	0.99	67148350	67148460	RL-1284-22-43	RL1500-22	PE-53815	PE-53815-S	DO3308-223
L18	220	0.55	67144040	67144420	RL-5471-2	RL1500-220	PE-53818	PE-53818-S	DO3316-224

Table 1. INDUCTOR MANUFACTURERS' PART NUMBERS

Copyright © 2004–2013, Texas Instruments Incorporated

SNVS279C - MAY 2004 - REVISED APRIL 2013

www.ti.com

								-	
Ind.	Inductance (µH)	Current (A)	Schott Renco			0	Pulse E	Coilcraft	
Ref.			Through	Surface	Through	Surface	Through	Surface	Surface
Desg.		(~)	Hole	Mount	Hole	Mount	Hole	Mount	Mount
L19	150	0.66	67144050	67144430	RL-5471-3	RL1500-150	PE-53819	PE-53819-S	DO3316-154
L20	100	0.82	67144060	67144440	RL-5471-4	RL1500-100	PE-53820	PE-53820-S	DO3316-104
L21	68	0.99	67144070	67144450	RL-5471-5	RL1500-68	PE-53821	PE-53821-S	DO3316-683
L22	47	1.17	67144080	67144460	RL-5471-6	—	PE-53822	PE-53822-S	DO3316-473
L23	33	1.40	67144090	67144470	RL-5471-7	—	PE-53823	PE-53823-S	DO3316-333
L24	22	1.70	67148370	67148480	RL-1283-22-43	—	PE-53824	PE-53824-S	DO3316-223
L27	220	1.00	67144110	67144490	RL-5471-2	—	PE-53827	PE-53827-S	DO5022P-224
L28	150	1.20	67144120	67144500	RL-5471-3	—	PE-53828	PE-53828-S	DO5022P-154
L29	100	1.47	67144130	67144510	RL-5471-4	_	PE-53829	PE-53829-S	DO5022P-104
L30	68	1.78	67144140	67144520	RL-5471-5	—	PE-53830	PE-53830-S	DO5022P-683

Table 2. Inductor Manufact	urers' Phone Numbers
-----------------------------------	----------------------

Coilcraft Inc.	Phone	(800) 322-2645
	FAX	(708) 639-1469
Coilcraft Inc., Europe	Phone	+44 1236 730 595
	FAX	+44 1236 730 627
Pulse Engineering Inc.	Phone	(619) 674-8100
	FAX	(619) 674-8262
Pulse Engineering Inc.,	Phone	+353 93 24 107
Europe	FAX	+353 93 24 459
Renco Electronics Inc.	Phone	(800) 645-5828
	FAX	(516) 586-5562
Schott Corp.	Phone	(612) 475-1173
	FAX	(612) 475-1786

Table 3. Output Capacitor Table

		Output Capacitor						
Output		Surface Mount		Through Hole				
Voltage	Inductance (µH)	ce Sprague	AVX TPS	Sanyo OS-CON	Sanyo MV-GX	Nichicon	Panasonic	
(V)	(6.1)	594D Series	Series	SA Series	Series	PL Series	HFQ Series	
		(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	
	22	120/6.3	100/10	100/10	330/35	330/35	330/35	
	33	120/6.3	100/10	68/10	220/35	220/35	220/35	
3.3	47	68/10	100/10	68/10	150/35	150/35	150/35	
3.3	68	120/6.3	100/10	100/10	120/35	120/35	120/35	
	100	120/6.3	100/10	100/10	120/35	120/35	120/35	
	150	120/6.3	100/10	100/10	120/35	120/35	120/35	
	22	100/16	100/10	100/10	330/35	330/35	330/35	
	33	68/10	10010	68/10	220/35	220/35	220/35	
5.0	47	68/10	100/10	68/10	150/35	150/35	150/35	
5.0	68	100/16	100/10	100/10	120/35	120/35	120/35	
	100	100/16	100/10	100/10	120/35	120/35	120/35	
	150	100/16	100/10	100/10	120/35	120/35	120/35	

SNVS279C - MAY 2004 - REVISED APRIL 2013

Table 3. Output Capacitor	Table (continued)
---------------------------	-------------------

		Output Capacitor						
Output		Surface Mount		nt Through Hole				
Voltage	Inductance (µH)	Spraque	AVX TPS	Sanyo OS-CON	Sanyo MV-GX	Nichicon	Panasonic	
(V)	(µrr)	594D Series	Series	SA Series	Series	PL Series	HFQ Series	
		(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	
	22	120/20	(2×) 68/20	68/20	330/35	330/35	330/35	
	33	68/25	68/20	68/20	220/35	220/35	220/35	
	47	47/20	68/20	47/20	150/35	150/35	150/35	
12	68	47/20	68/20	47/20	120/35	120/35	120/35	
	100	47/20	68/20	47/20	120/35	120/35	120/35	
	150	47/20	68/20	47/20	120/35	120/35	120/35	
	220	47/20	68/20	47/20	120/35	120/35	120/35	

Table 4. CAPACITOR MANUFACTURERS' PHONE NUMBERS

Nichicon Corp.	Phone	(847) 843-7500
	FAX	(847) 843-2798
Panasonic	Phone	(714) 373-7857
	FAX	(714) 373-7102
AVX Corp.	Phone	(803) 448-9411
	FAX	(803) 448-1943
Sprague/Vishay	Phone	(207) 324-4140
	FAX	(207) 324-7223
Sanyo Corp.	Phone	(619) 661-6322
	FAX	(619) 661-1055

Table 5. Schottky Diode Selection Table

	1A Diodes		3A D	iodes	
V _R	Surface	Through	Surface	Through	
	Mount	Hole	Mount	Hole	
20V	SK12	1N5817	SK32	1N5820	
	B120	SR102		SR302	
30V	SK13	1N5818	SK33	1N5821	
	B130	11DQ03	30WQ03F	31DQ03	
	MBRS130	SR103			
40V	SK14	1N5819	SK34	1N5822	
	B140	11DQ04	30BQ040	MBR340	
	MBRS140	SR104	30WQ04F	31DQ04	
	10BQ040		MBRS340	SR304	
	10MQ040		MBRD340		
	15MQ040				
50V	SK15	MBR150	SK35	MBR350	
	B150	11DQ05	30WQ05F	31DQ05	
	10BQ050	SR105		SR305	

SNVS279C-MAY 2004-REVISED APRIL 2013

Table 6. Diode Manufacturers' Phone Numbers				
International Rectifier Corp.	Phone	(310) 322-3331		
	FAX	(310) 322-3332		
Motorola, Inc.	Phone	(800) 521-6274		
	FAX	(602) 244-6609		
General Instruments Corp.	Phone	(516) 847-3000		
	FAX	(516) 847-3236		
Diodes, Inc.	Phone	(805) 446-4800		
	FAX	(805) 446-4850		

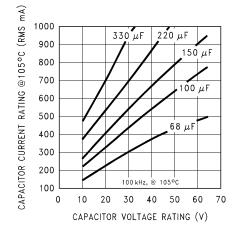


Figure 27. RMS Current Ratings for Low ESR Electrolytic Capacitors (Typical)

SNVS279C - MAY 2004 - REVISED APRIL 2013

Table 7. Recommended Application Voltage for AVX TPS and Sprague 594D Tantalum Chip Capacitors Derated for 85°C

Recommended Application Voltage	Voltage Rating
+85°	C Rating
AVX TPS	
3.3	6.3
5	10
10	20
12	25
15	35
Sprague 594D	
2.5	4
3.3	6.3
5	10
8	16
12	20
18	25
24	35
29	50

Table 8. LM2672EP Series Buck Regulator Design Procedure (Adjustable Output)

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)
To simplify the buck regulator design procedure, National Semiconductor is making available computer design software to be used with the SIMPLE SWITCHER [®] line of switching regulators. LM267X Made Simple version 6.0 is available on Windows [®] 3.1, NT, or 95 operating systems.	
Given:	Given:
V _{OUT} = Regulated Output Voltage	$V_{OUT} = 20V$
V _{IN} (max) = Maximum Input Voltage	V _{IN} (max) = 28V
I _{LOAD} (max) = Maximum Load Current	$I_{LOAD}(max) = 1A$
F = Switching Frequency (Fixed at a nominal 260 kHz).	F = Switching Frequency (Fixed at a nominal 260 kHz).
1. Programming Output Voltage (Selecting R ₁ and R ₂ , as shown in Figure 22) Use the following formula to select the appropriate resistor values. $V_{OUT} = V_{REF} \left(1 + \frac{R_2}{R_1}\right)_{Where} V_{REF} = 1.21V$ (3) Select a value for R ₁ between 240Ω and 1.5 kΩ. The lower resistor values minimize noise pickup in the sensitive feedback pin. (For the lowest temperature coefficient and the best stability with time, use 1% metal film resistors.) $R_2 = R_1 \left(\frac{V_{OUT}}{V_{REF}} - 1\right)$ (5)	1. Programming Output Voltage (Selecting R ₁ and R ₂ , as shown in Figure 22) Select R ₁ to be 1 kΩ, 1%. Solve for R ₂ . $R_2 = R_1 \left(\frac{V_{OUT}}{V_{REF}} - 1\right) = 1 k\Omega \left(\frac{20V}{1.23V} - 1\right) $ (4) $R_2 = 1 k\Omega (16.53 - 1) = 15.53 k\Omega, \text{ closest 1% value is 15.4 k}\Omega.$ $R_2 = 15.4 k\Omega.$
2. Inductor Selection (L1) A. Calculate the inductor Volt • microsecond constant $E \bullet T (V \bullet \mu s)$, from the following formula:	 2. Inductor Selection (L1) A. Calculate the inductor Volt • microsecond constant (E • T),
$E \cdot T = (V_{IN(MAX)} - V_{OUT} - V_{SAT}) \cdot \frac{V_{OUT} + V_D}{V_{IN(MAX)} - V_{SAT} + V_D} \cdot \frac{1000}{260} (V \cdot \mu s)$ (6)	$E \cdot T = (28 - 20 - 0.25) \cdot \frac{20 + 0.5}{28 - 0.25 + 0.5} \cdot \frac{1000}{260} (V \cdot \mu s)$ $E \cdot T = (7.75) \cdot \frac{20.5}{28.25} \cdot 3.85 (V \cdot \mu s) = 21.6 (V \cdot \mu s) $ (7)
where $V_{SAT}\mbox{=}\mbox{internal switch saturation voltage=}0.25V$ and V_D = diode forward voltage drop = $0.5V$	

TEXAS INSTRUMENTS

SNVS279C-MAY 2004-REVISED APRIL 2013

www.ti.com

Table 8. LM2672EP Series Buck Regulator Design Procedure (Adjustable Output) (continued)

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)
B. Use the $E \bullet T$ value from the previous formula and match it with the $E \bullet T$ number on the vertical axis of the Inductor Value Selection Guide shown in Figure 26.	B. E • T = 21.6 (V • µs)
C. On the horizontal axis, select the maximum load current.	C. I _{LOAD} (max) = 1A
D. Identify the inductance region intersected by the E • T value and the Maximum Load Current value. Each region is identified by an inductance value and an inductor code (LXX).	D. From the inductor value selection guide shown in Figure 26, the inductance region intersected by the 21.6 (V • μ s) horizontal line and the 1A vertical line is 68 μ H, and the inductor code is L30.
E. Select an appropriate inductor from the four manufacturer's part numbers listed in Table 1. For information on the different types of inductors, see the inductor selection in LM2672EP SERIES BUCK REGULATOR DESIGN PROCEDURE (FIXED OUTPUT) procedure.	E. From the table in Table 1, locate line L30, and select an inductor part number from the list of manufacturers' part numbers.
3. Output Capacitor Selection (C_{OUT}) A. Select an output capacitor from the capacitor code selection guide in Table 9. Using the inductance value found in the inductor selection guide, step 1, locate the appropriate capacitor code corresponding to the desired output voltage.	3. Output Capacitor Selection (C _{OUT}) A. Use the appropriate row of the capacitor code selection guide, in Table 9. For this example, use the 15–20V row. The capacitor code corresponding to an inductance of 68 μ H is C20.
B. Select an appropriate capacitor value and voltage rating, using the capacitor code, from the output capacitor selection table in Table 10. There are two solid tantalum (surface mount) capacitor manufacturers and four electrolytic (through hole) capacitor manufacturers to choose from. It is recommended that both the manufacturers and the manufacturer's series that are listed in the table be used. A table listing the manufacturers' phone numbers is located in Table 4.	B. From the output capacitor selection table in Table 10, choose a capacitor value (and voltage rating) that intersects the capacitor code(s) selected in section A, C20. The capacitance and voltage rating values corresponding to the capacitor code C20 are the: Surface Mount: $33 \ \mu F/25V$ Sprague 594D Series. $33 \ \mu F/25V$ Sprague 594D Series. Through Hole: $33 \ \mu F/25V$ Sanyo OS-CON SC Series. $120 \ \mu F/35V$ Sanyo MV-GX Series. $120 \ \mu F/35V$ Nichicon PL Series. $120 \ \mu F/35V$ Panasonic HFQ Series. Other manufacturers or other types of capacitors may also be used, provided the capacitor specifications (especially the 100 kHz ESR) closely match the characteristics of the capacitors listed in the output capacitor table. Refer to the capacitor manufacturers' data sheet for this information.
4. Catch Diode Selection (D1) A. In normal operation, the average current of the catch diode is the load current times the catch diode duty cycle, 1-D (D is the switch duty cycle, which is approximately V_{OUT}/V_{IN}). The largest value of the catch diode average current occurs at the maximum input voltage (minimum D). For normal operation, the catch diode current rating must be at least 1.3 times greater than its maximum average current. However, if the power supply design must withstand a continuous output short, the diode should have a current rating greater than the maximum current limit of the LM2672EP. The most stressful condition for this diode is a shorted output condition.	 4. Catch Diode Selection (D1) A. Refer to the table shown in Table 5. Schottky diodes provide the best performance, and in this example a 1A, 40V Schottky diode would be a good choice. If the circuit must withstand a continuous shorted output, a higher current (at least 2.2A) Schottky diode is recommended.
B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.	
C. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency. The Schottky diode must be located close to the LM2672EP using short leads and short printed circuit traces.	

SNVS279C-MAY 2004-REVISED APRIL 2013

Table 8. LM2672EP Series Buck Regulator Design Procedure (Adjustable Output) (continued)

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)		
5. Input Capacitor (C _{IN}) A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground to prevent large voltage transients from appearing at the input. This capacitor should be located close to the IC using short leads. In addition, the RMS current rating of the input capacitor should be selected to be at least ½ the DC load current. The capacitor manufacturer data sheet must be checked to assure that this current rating is not exceeded. The curves shown in Figure 27 show typical RMS current ratings for several different aluminum electrolytic capacitor values. A parallel connection of two or more capacitors may be required to increase the total minimum RMS current rating to suit the application requirements. For an aluminum electrolytic capacitors are used. The tantalum capacitor voltage rating should be at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating should be twice the maximum input voltage. The tables in Table 7 show the recommended application voltage for AVX TPS and Sprague 594D tantalum capacitors. It is also recommended that they be surge current tested by the manufacturer. The TPS series available from AVX, and the 593D and 594D series from Sprague are all surge current tested. Another approach to minimize the surge current stresses on the input capacitor is to add a small inductor in series with the input supply line.	5. Input Capacitor (C _{IN}) The important parameters for the input capacitor are the input voltage rating and the RMS current rating. With a maximum input voltage of 28V, an aluminum electrolytic capacitor with a voltage rating of at least 35V ($1.25 \times V_{IN}$) would be needed. The RMS current rating requirement for the input capacitor in a buck regulator is approximately ½ the DC load current. In this example, with a 1A load, a capacitor with a RMS current rating of at least 500 mA is needed. The curves shown in Figure 27 can be used to select an appropriate input capacitor. From the curves, locate the 35V line and note which capacitor values have RMS current ratings greater than 500 mA. For a through hole design, a 330 µF/35V electrolytic capacitor (Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate. Additionally, for a complete surface mount design, electrolytic capacitors such as the Sanyo CV-C or CV-BS and the Nichicon WF or UR and the NIC Components NACZ series could be considered. For surface mount designs, solid tantalum capacitors can be used, but caution must be exercised with regard to the capacitor surge current rating and voltage rating. In this example, checking Table 7, and the Sprague 594D series datasheet, a Sprague 594D 15 µF, 50V capacitor is adequate.		
6. Boost Capacitor (C _B) This capacitor develops the necessary voltage to turn the switch gate on fully. All applications should use a 0.01 μ F, 50V ceramic capacitor.	6. Boost Capacitor (C_B) For this application, and all applications, use a 0.01 μ F, 50V ceramic capacitor.		
If the soft-start and frequency synchronization features are desired, look at steps 6 and 7 in the fixed output design procedure.			

Table 9. Capacitor Code Selection Guide

Case	Output	Inductance (µH)						
Style ⁽¹⁾	Voltage (V)	22	33	47	68	100	150	220
SM and TH	1.21-2.50	_	_	_	_	C1	C2	C3
SM and TH	2.50-3.75	_	_	_	C1	C2	C3	C3
SM and TH	3.75–5.0	_	_	C4	C5	C6	C6	C6
SM and TH	5.0-6.25	_	C4	C7	C6	C6	C6	C6
SM and TH	6.25–7.5	C8	C4	C7	C6	C6	C6	C6
SM and TH	7.5–10.0	C9	C10	C11	C12	C13	C13	C13
SM and TH	10.0–12.5	C14	C11	C12	C12	C13	C13	C13
SM and TH	12.5–15.0	C15	C16	C17	C17	C17	C17	C17
SM and TH	15.0–20.0	C18	C19	C20	C20	C20	C20	C20
SM and TH	20.0–30.0	C21	C22	C22	C22	C22	C22	C22
TH	30.0–37.0	C23	C24	C24	C25	C25	C25	C25

(1) SM - Surface Mount, TH - Through Hole

Table 10. Output Capacitor Selection Table

Output Capacitor							
Con	Surface	Mount		Through Hole			
Cap. Ref. Desg. #	Sprague AVX		Sanyo OS-CON SA Series (μF/V)	Nichicon PL Series (µF/V)	Panasonic HFQ Series (μF/V)		
C1	120/6.3	100/10	100/10	220/35	220/35	220/35	
C2	120/6.3	100/10	100/10	150/35	150/35	150/35	

Copyright © 2004–2013, Texas Instruments Incorporated

SNVS279C-MAY 2004-REVISED APRIL 2013

www.ti.com

Table 10. Output Capacitor Se	Selection Table (continued)
-------------------------------	-----------------------------

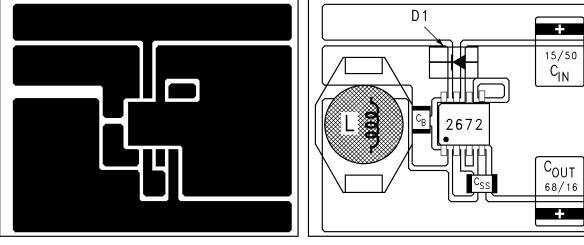
Output Capacitor							
Surface Mount			Through Hole				
Cap. Ref.	Sprague AVX TPS		Sanyo OS-CON	Sanyo MV-GX	Nichicon	Panasonic	
Desg.	594D Series	Series	SA Series	Series	PL Series	HFQ Series	
#	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	
C3	120/6.3	100/10	100/35	120/35	120/35	120/35	
C4	68/10	100/10	68/10	220/35	220/35	220/35	
C5	100/16	100/10	100/10	150/35	150/35	150/35	
C6	100/16	100/10	100/10	120/35	120/35	120/35	
C7	68/10	100/10	68/10	150/35	150/35	150/35	
C8	100/16	100/10	100/10	330/35	330/35	330/35	
C9	100/16	100/16	100/16	330/35	330/35	330/35	
C10	100/16	100/16	68/16	220/35	220/35	220/35	
C11	100/16	100/16	68/16	150/35	150/35	150/35	
C12	100/16	100/16	68/16	120/35	120/35	120/35	
C13	100/16	100/16	100/16	120/35	120/35	120/35	
C14	100/16	100/16	100/16	220/35	220/35	220/35	
C15	47/20	68/20	47/20	220/35	220/35	220/35	
C16	47/20	68/20	47/20	150/35	150/35	150/35	
C17	47/20	68/20	47/20	120/35	120/35	120/35	
C18	68/25	(2×) 33/25	47/25 (1)	220/35	220/35	220/35	
C19	33/25	33/25	33/25 (1)	150/35	150/35	150/35	
C20	33/25	33/25	33/25 (1)	120/35	120/35	120/35	
C21	33/35	(2×) 22/25	See (2)	150/35	150/35	150/35	
C22	33/35	22/35	See ⁽²⁾	120/35	120/35	120/35	
C23	See (2)	See (2)	See (2)	220/50	100/50	120/50	
C24	See ⁽²⁾	See (2)	See (2)	150/50	100/50	120/50	
C25	See (2)	See (2)	See (2)	150/50	82/50	82/50	

(1) The SC series of Os-Con capacitors (others are SA series)
(2) The voltage ratings of the surface mount tantalum chip and Os-Con capacitors are too low to work at these voltages.

+

DC Input

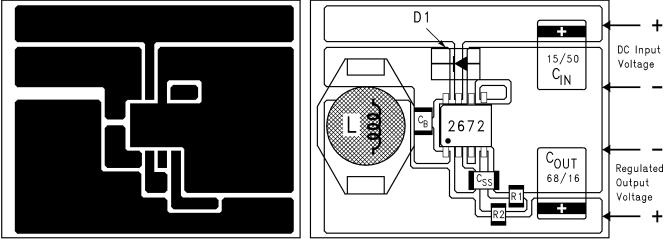
Voltage


Regulated Output

Voltage

www.ti.com

APPLICATION INFORMATION


TYPICAL SURFACE MOUNT PC BOARD LAYOUT, FIXD OUTPUT (4X SIZE)

 $\begin{array}{l} C_{IN} \mbox{-} 15 \ \mu F, \ 50V, \ Solid \ Tantalum \ Sprague, \ "594D \ series" \\ C_{OUT} \mbox{-} 68 \ \mu F, \ 16V, \ Solid \ Tantalum \ Sprague, \ "594D \ series" \\ D1 \ - \ 1A, \ 40V \ Schottky \ Rectifier, \ Surface \ Mount \\ L1 \ - \ 33 \ \mu H, \ L23, \ Coilcraft \ DO3316 \end{array}$

 $C_B - 0.01 \ \mu\text{F}$, 50V, Ceramic

TYPICAL SURFACE MOUNT PC BOARD LAYOUT, ADJUSTABLE OUTPUT (4X SIZE)

 $\begin{array}{l} C_{\text{IN}} \text{ - 15 } \mu\text{F}, 50\text{V}, \text{ Solid Tantalum Sprague, "594D series"} \\ C_{\text{OUT}} \text{ - 33 } \mu\text{F}, 25\text{V}, \text{ Solid Tantalum Sprague, "594D series"} \\ \text{D1 - 1A, 40V Schottky Rectifier, Surface Mount} \\ \text{L1 - 68 } \mu\text{H}, \text{L30, Coilcraft DO3316} \\ \text{C}_{\text{B}} \text{ - 0.01 } \mu\text{F}, 50\text{V}, \text{Ceramic} \\ \text{R1 - 1k, 1\%} \end{array}$

R2 - Use formula in Design Procedure

Figure 28. PC Board Layout

LM2672EP

Layout is very important in switching regulator designs. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines (in Figure 21 and Figure 22) should be wide printed circuit traces and should be kept as short as possible. For best results, external components should be located as close to the switcher IC as possible using ground plane construction or single point grounding.

If **open core inductors are used**, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC ground path, and C_{OUT} wiring can cause problems.

When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor.

WSON PACKAGE DEVICES

The LM2672EP may be offered in the 16 lead WSON surface mount package to allow for increased power dissipation compared to the SOIC and PDIP.

The Die Attach Pad (DAP) can and should be connected to PCB Ground plane/island. For CAD and assembly guidelines refer to Application Note AN-1187 at SNOA401.

REVISION HISTORY

Ch	nanges from Revision B (April 2013) to Revision C	Page
•	Changed layout of National Data Sheet to TI format	24

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated