

LM4510

SNVS533C - SEPTEMBER 2007 - REVISED MAY 2013

LM4510 Synchronous Step-Up DC/DC Converter with True Shutdown Isolation

Check for Samples: LM4510

FEATURES

- 18V@80 mA from 3.2V Input
- 5V@280 mA from 3.2V Input
- No External Schottky Diode Required
- 85% Peak Efficiency
- Soft Start
- True Shutdown Isolation
- Stable with Small Ceramic or Tantalum Output Capacitors
- Output Short-Circuit Protection
- Feedback Fault Protection
- Input Under-Voltage Lock Out
- Thermal Shutdown
- 0.002 µA Shutdown Current
- Wide Input Voltage Range: 2.7V to 5.5V
- 1.0 MHz Fixed Frequency Operation
- Low-profile 10-pin SON Package (3mm x 3mm x 0.8mm)

APPLICATIONS

- Organic LED Panel Power Supply
- Charging Holster
- White LED Backlight
- USB Power Supply
- Class D Audio Amplifier
- Camera Flash LED Driver

DESCRIPTION

The LM4510 is a current mode step-up DC/DC converter with a 1.2A internal NMOS switch designed to deliver up to 120 mA at 16V from a Li-Ion battery.

The device's synchronous switching operation (no external Schottky diode) at heavy-load, and non-synchronous switching operation at light-load, maximizes power efficiency.

True shutdown function by synchronous FET and related circuitry ensures input and output isolation.

A programmable soft-start circuit allows the user to limit the amount of inrush current during startup. The output voltage can be adjusted by external resistors.

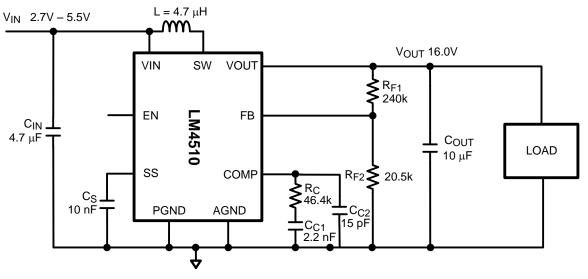


Figure 1. Typical Application Circuit

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Typical Application Circuit

www.ti.com

DESCRIPTION (CONTINUED)

The LM4510 features advanced short-circuit protection to maximize safety during output to ground short condition. During shutdown the feedback resistors and the load are disconnected from the input to prevent leakage current paths to ground.

The LM4510 is available in a 10-pin thermally enhanced Leadless Leadframe Package: SON-10.

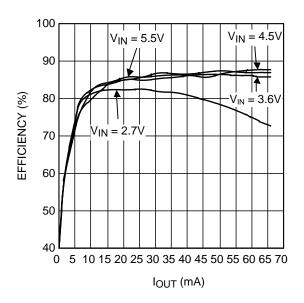
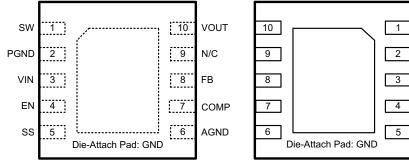



Figure 2. Efficiency at $V_{OUT} = 16V$

Connection Diagram

Top View

Bottom View

Nome						
Name	Pin	Description				
SW	1	Switch pin. Drain connections of both internal NMOS and PMOS devices.	vitch pin. Drain connections of both internal NMOS and PMOS devices.			
PGND	2	Power ground	wer ground			
VIN	3	nalog and Power supply input. Input range: 2.7V to 5.5V.				
EN	4	Enable logic input. HIGH= Enabled, LOW=Shutdown.				
SS	5	Soft-start pin				
AGND	6	Analog ground				
COMP	7	Compensation network connection.				

Pin Descriptions

Pin Descriptions (continued)

Name	Pin	Description		
FB	8	Output voltage feedback connection.		
N/C	9	No internal connection.		
VOUT	10	nternal PMOS source connection for synchronous rectification.		
DAP	DAP	Die Attach Pad thermal connection		

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾⁽²⁾⁽³⁾

VIN	-0.3V to 6.5V
VOUT	-0.3V to 21V
SW ⁽⁴⁾	-0.3V to V _{OUT} +0.3V
EN, SS, COMP FB	-0.3V to 6.5V
PGND to AGND	-0.2V to 0.2V
Continuous Power Dissipation ⁽⁵⁾	Internally Limited
Junction Temperature (T _{J-MAX})	150°C
Storage Temperature Range (T _S)	−65°C to +150°C
Lead Temperature (Soldering, 10 sec) ⁽⁶⁾	260°C
ESD Ratings ⁽⁷⁾	•
Human Body Model	2.0kV
Machine Model	200V

(1) Absolute maximum ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions for which the device is intended to be functional. For specifications and test conditions, see the Electrical Characteristics.

(2) All voltages are with respect to the potential at the GND pin.

- (3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
- (4) This condition applies if V_{IN} < V_{OUT}. If V_{IN} > V_{OUT}, a voltage greater than V_{IN} + 0.3V should not be applied to the VOUT or VSW pins. The absolute maximum specification applies to DC voltage. An extended negative voltage limit of -1V applies for a pulse of up to 1 μs, and -2V for a pulse of up to 40 ns. An extended positive voltage limit of 22V applies for a pulse of up to 20 ns.

(5) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at T_J=150°C (Typ.) and disengages at T_J=140°C (Typ.).

(6) For detailed soldering information and specifications, please refer to Application Note 1187: Leadless Leadframe Package (SON), available at www.national.com.

(7) The Human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin (MIL-STD-883 3015.7). The machine model is a 200 pF capacitor discharged directly into each pin.

Operating Conditions

Supply Voltage Range (VIN)	2.7V to 5.5V
Junction Temperature Range $(T_J)^{(1)}$	-40°C to +125°C
Output Voltage Range (V _{OUT})	Up to 18V

(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (T_{A-MAX}) is dependent on the maximum operating junction temperature $(T_{J-MAX-OP} = 125^{\circ}C)$, the maximum power dissipation of the device in the application (P_{D-MAX}) , and the junction-to ambient thermal resistance of the part/package in the application (θ_{JA}) , as given by the following equation: $T_{A-MAX} = T_{J-MAX-OP} - (\theta_{JA} \times P_{D-MAX})$

Thermal Properties

Junction to Ambient Thermal Resistance (θ_{JA}) SON-10 Package ⁽¹⁾	36°C/W
--	--------

(1) Junction-to-ambient thermal resistance (θ_{JA}) is taken by a numerical analysis conforming to JEDEC standards. In applications where high maximum power dissipation exists (high V_{IN}, high I_{OUT}), special care must be paid to thermal dissipation issues when designing the board layout. For more information on these topics, please refer to Application Note 1187: Leadless Leadframe Package (SON).

www.ti.com

Electrical Characteristics⁽¹⁾⁽²⁾

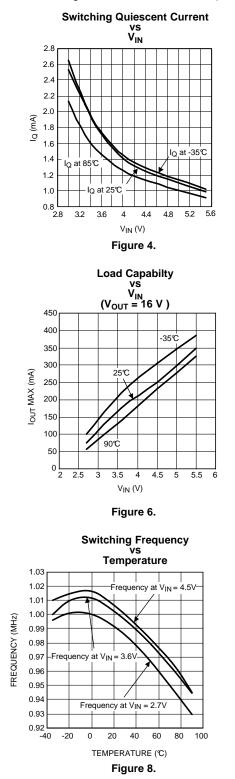
Limits in standard type face are for $T_J = 25^{\circ}$ C only. Limits in **boldface type** apply over the full operating junction temperature range (-40° C $\leq T_J \leq +125^{\circ}$ C). Unless otherwise stated the following conditions apply: VIN = 3.6V, EN = 3.6V.

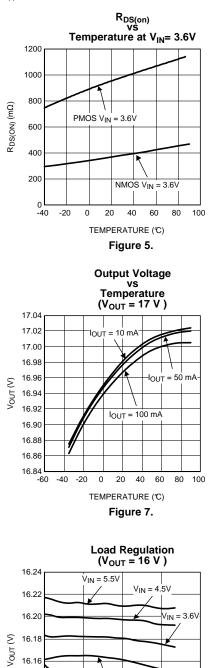
Parameter		eter Test Conditions Min ⁽¹⁾		Тур ⁽²⁾	Max ⁽¹⁾	Units	
V _{FB}	FB Pin Voltage	2.7V ≤ VIN ≤ 5.5V	1.24	1.265	1.29	V	
I _{FB}	FB Pin Bias Current ⁽³⁾			0.050	1.5	μA	
P	NMOS Switch R _{DS(on)}	I _{SW} = 0.3A		0.45 1.1		0	
R _{DS(on)}	PMOS Switch R _{DS(on)}	I _{SW} = 0.3A, VOUT = 10V		0.9	1.1	Ω	
I _{CL}	NMOS Switch Current Limit		1.0	1.2	1.8	А	
	Device Switching	EN = 3.6V, FB = COMP		1.7	2.5	mA	
l _Q	Non-switching Current	EN = 3.6V, FB > 1.29V		0.8	2.0	mA	
	Shutdown Current	EN = 0V		0.002	0.050	μA	
IL	SW Leakage Current ⁽³⁾	SW = 20V		0.01	0.150	μA	
I _{VOUT}	VOUT Bias Current ⁽³⁾	VOUT = 20V	50	90	150	μA	
I _{VL}	PMOS Switch Leakage Current	SW = 0V, VOUT = 20V		0.001	0.100	μA	
f _{SW}	Switching Frequency		0.85	1.0	1.2	MHz	
D _{MAX}	Maximum Duty Cycle	FB = 0V	88	94		%	
D _{MIN}	Minimum Duty Cycle			15	20	%	
Gm	Error Amplifier Transconductance		70	130	200	µmho	
EN	Device Enable	HIGH	1.2	0.81			
Threshold	Device Shutdown	LOW		0.78	0.4	V	
I _{EN}	EN Pin Bias Current	0 < EN < 3.6V		3.2	8.0	μA	
FB Fault	Feedbeel, Feult Drotestien	ON Threshold	18.0	19.7	20.7	V	
Protection Feedback Fault Protection		OFF Threshold	17.0	18.7	20.0		
		ON Threshold		2.5	2.65	M	
UVLO	Input Undervoltage Lockout	OFF Threshold	2.1	2.35		V	
I _{SS}	Soft-Start Pin Current ⁽⁴⁾		9	11.3	15	μA	

(1) All limits specified at room temperature (standard typeface) and at temperature extremes (bold typeface). All room temperature limits are production tested, specified through statistical analysis or by design. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

(2) Typical numbers are at 25°C and represent the most likely norm.

(3) Current flows into the pin.


(4) Current flows out of the pin.



www.ti.com

Typical Performance Characteristics

LM4510SD, Circuit of Figure 1, (L=4.7 μ H, COILCRAFT, DO3316-472ML; C_{IN}=4.7 μ F, TDK, C2012X5R0J475K; C_{OUT}=10 μ F, AVX, 12103D106KAT2A; C_S=10 nF, TDK, C1608C0G1E103J; C_{C1}=2.2 nF, Taiyo Yuden, TMK107SD222JA-T; R_C=46.4 KΩ, Yageo, 9t06031A4642FBHFT), V_{IN}=3.6V, V_{OUT}=16V, T_A=25°C, unless otherwise noted.

 $V_{IN} = 3.0V$

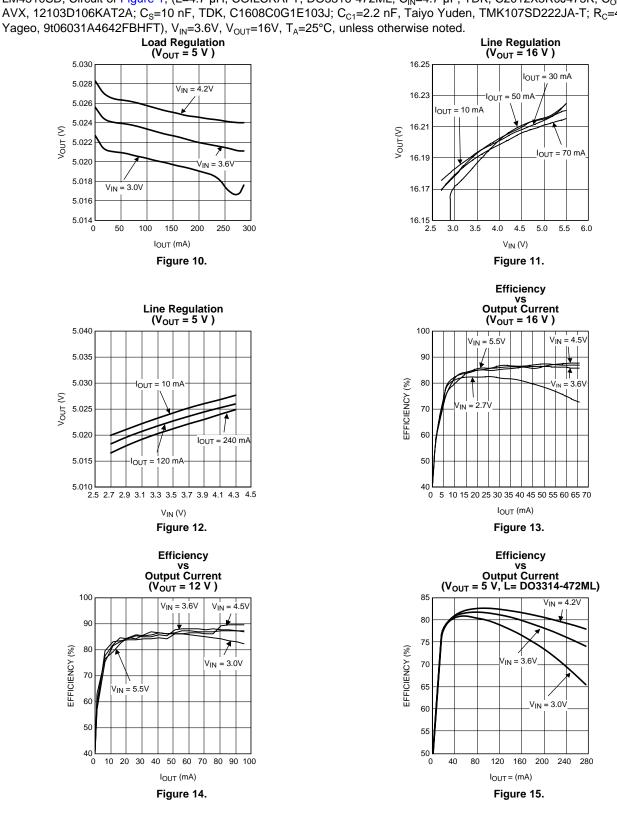
16.14

16.12

16.10

0

 $V_{IN} = 2.7$


20

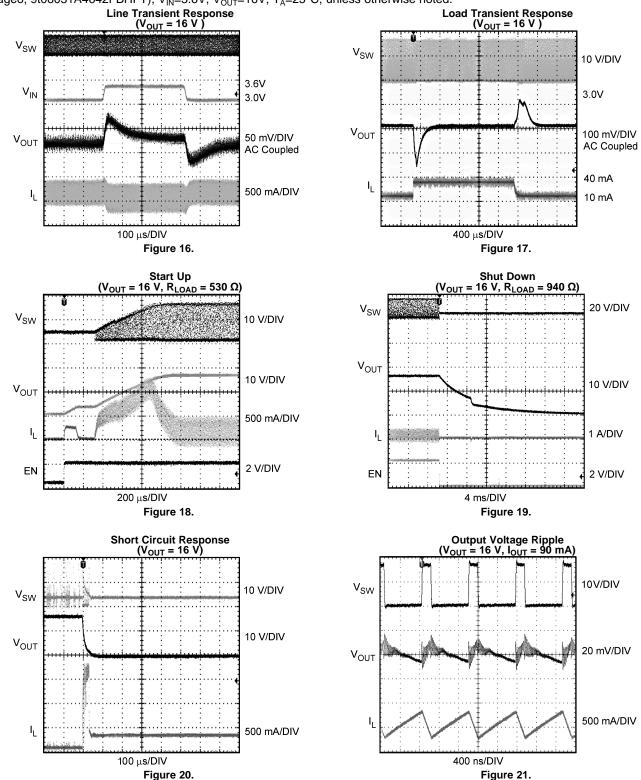
LM4510

SNVS533C-SEPTEMBER 2007-REVISED MAY 2013

EXAS NSTRUMENTS

www.ti.com

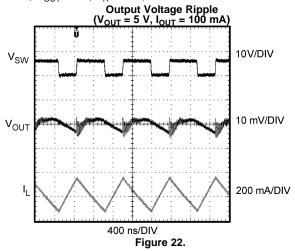
Typical Performance Characteristics (continued)


LM4510SD, Circuit of Figure 1, (L=4.7 µH, COILCRAFT, DO3316-472ML; CIN=4.7 µF, TDK, C2012X5R0J475K; COUT=10 µF, AVX, 12103D106KAT2A; C_S=10 nF, TDK, C1608C0G1E103J; C_{C1}=2.2 nF, Taiyo Yuden, TMK107SD222JA-T; R_C=46.4 KΩ,

www.ti.com

Typical Performance Characteristics (continued)

LM4510SD, Circuit of Figure 1, (L=4.7 μ H, COILCRAFT, DO3316-472ML; C_{IN}=4.7 μ F, TDK, C2012X5R0J475K; C_{OUT}=10 μ F, AVX, 12103D106KAT2A; C_S=10 nF, TDK, C1608C0G1E103J; C_{C1}=2.2 nF, Taiyo Yuden, TMK107SD222JA-T; R_C=46.4 KΩ, Yageo, 9t06031A4642FBHFT), V_{IN}=3.6V, V_{OUT}=16V, T_A=25°C, unless otherwise noted.

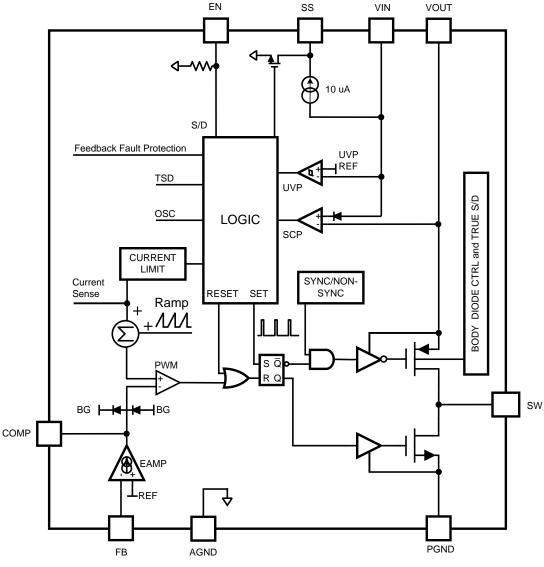

TEXAS INSTRUMENTS

SNVS533C-SEPTEMBER 2007-REVISED MAY 2013

www.ti.com

Typical Performance Characteristics (continued)

LM4510SD, Circuit of Figure 1, (L=4.7 μ H, COILCRAFT, DO3316-472ML; C_{IN}=4.7 μ F, TDK, C2012X5R0J475K; C_{OUT}=10 μ F, AVX, 12103D106KAT2A; C_S=10 nF, TDK, C1608C0G1E103J; C_{C1}=2.2 nF, Taiyo Yuden, TMK107SD222JA-T; R_C=46.4 K Ω , Yageo, 9t06031A4642FBHFT), V_{IN}=3.6V, V_{OUT}=16V, T_A=25°C, unless otherwise noted.



INSTRUMENTS

www.ti.com

XAS

SNVS533C - SEPTEMBER 2007 - REVISED MAY 2013

BLOCK DIAGRAM

Figure 23. LM4510 Block Diagram

Operation Description

LM4510 is a peak current-mode, fixed-frequency PWM boost regulator that employs both Synchronous and Non-Synchronous Switching.

The DC/DC regulator regulates the feedback output voltage providing excellent line and load transient response. The operation of the LM4510 can best be understood by referring to the Block Diagram.

NON-SYNCHRONOUS OPERATION

The device operates in Non-synchronous Mode at light load (I_{OUT} < 10 mA) or when output voltage is lower than 10V (typ.). At light load, LM4510 automatically changes its switching operation from 'Synchronous' to 'Non-Synchronous' depending on V_{IN} and L. Non-Synchronous operation at light load maximizes power efficiency by reducing PMOS driving loss.

SNVS533C-SEPTEMBER 2007-REVISED MAY 2013

OPERATION IN SYNCHRONOUS CONTINUOUS CONDUCTION MODE (CYCLE 1, CYCLE 2)

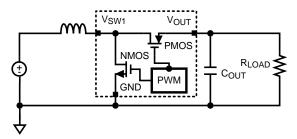


Figure 24. Schematic of Synchronous Boost Converter

Synchronous boost converter is shown in Figure 24. At the start of each cycle, the oscillator sets the driver logic and turns on the NMOS power device and turns off the PMOS power device.

Cycle 1 Description

Refer to Figure 25. NMOS switch turn-on \rightarrow Inductor current increases and flows to GND.

PMOS switch turn-off \rightarrow Isolate VOUT from SW \rightarrow Output capacitor supplies load current.

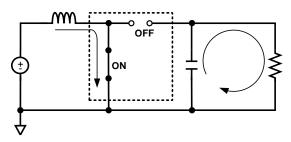


Figure 25. Equivalent Circuit During Cycle 1

During operation, EAMP output voltage (V_{COMP}) increases for larger loads and decreases for smaller loads. When the sum of the ramp compensation and the sensed NMOS current reaches a level determined by the EAMP output voltage, the PWM COMP resets the logic, turning off the NMOS power device and turning on the PMOS power device.

Cycle 2 Description

Refer to Figure 26. NMOS Switch turn-off \rightarrow PMOS Switch turn-on \rightarrow Inductor current decreases and flows through PMOS \rightarrow Inductor current recharges output capacitor and supplies load current.

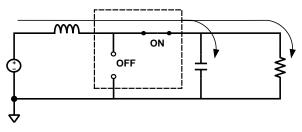


Figure 26. Equivalent Circuit During Cycle 2

After the switching period the oscillator then sets the driver logic again repeating the process.

ON/OFF CONTROL

The LM4510 shuts down when the EN pin is low. In this mode the feedback resistors and the load are disconnected from the input in order to avoid leakage current flow and to allow the output voltage to drop to 0V.

The LM4510 turns on when EN is high. There is an internal pull-down resistor on the EN pin so the device is in a normally off state.

SHORT CIRCUIT PROTECTION

When V_{OUT} goes down to V_{IN} –0.7V (typ.), the device stops switching due to the short-circuit protection circuitry and the short-circuit output current is limited to $I_{INIT CHARGE}$.

FEEDBACK FAULT PROTECTION

The LM4510 features unique Feedback Fault Protection to maximize safety when the feedback resistor is not properly connected to a circuit or the feedback node is shorted directly to ground.

Feedback fault triggers V_{OUT} monitoring. During monitoring, if V_{OUT} reaches a protection level, the device shuts down. When the feedback network is reconnected and V_{OUT} is lower than the OFF threshold level of Feedback Fault Protection, V_{OUT} monitoring stops. V_{OUT} is then regulated by the control loop.

INPUT UNDER-VOLTAGE LOCK-OUT

The LM4510 has dedicated circuitry to protect the IC and the external components when the battery voltage is lower than the preset threshold. This under-voltage lock-out with hysteresis prevents malfunctions during startup or abnormal power off.

THERMAL SHUTDOWN

If the die temperature exceeds 150°C (typ.), the thermal protection circuitry shuts down the device. The switches remain off until the die temperature is reduced to approximately 140°C (typ.).

Application Information

ADJUSTING OUTPUT VOLTAGE

The output voltage is set using the feedback pin and a resistor voltage divider (R_{F1} , R_{F2}) connected to the output as shown in the Typical Application Circuit.

The ratio of the feedback resistors sets the output voltage.

R_{F2} Selection

First of all choose a value for R_{F2} generally between 10 k Ω and 25 k Ω .

R_{F1} Selection

Calculate R_{F1} using the following equation:

$$R_{F1} = (\frac{V_0}{V_{FB}} - 1) \times R_{F2}[\Omega]$$

(1)

Table 1 gives suggested component values for several typical output voltages.

Output Voltage (V) R_c (kΩ) R_{F2} (k Ω) R_{F1} (k Ω) C_{C1} (nF) 16 20.5 240 46.4 2.2 12 20.5 174 46.4 2.2

20.5

20.5

Table 1. Suggested Component Values for Different Output Voltages

60.4

33

46.4

46.4

5

3.3

When the output voltage is set at different level, it is important to know the maximum load capability. By first order estimation, $I_{OUT(MAX)}$ can be estimated by the following equation:

$$I_{OUT_Max} = \frac{1.32 \text{ x V}_{IN} - 2.79}{V_{OUT}}$$
 [A]

INDUCTOR SELECTION

The larger value inductor makes lower peak inductor current and reduces stress on internal power NMOS.

On the other hand, the smaller value inductor has smaller outline, lower DCR and a higher current capacity. Generally a 4.7 µH to 15 µH inductor is recommended.

IL AVE CHECK

The average inductor current is given by the following equation:

$$I_{L_AVE} = \frac{I_{OUT}}{\eta \times D'} [A], D' = \frac{V_{IN}}{V_{OUT}}$$

Where I_{OUT} is output current, η is the converter efficiency of the total driven load and D' is the off duty cycle of the switching regulator.

Inductor DC current rating (40°C temperature rise) should be more than the average inductor current at worst case.

ΔI Define

12

The inductor ripple current is given by the following equations:

$$\Delta I_{L} = \frac{V_{IN} \times D}{L \times f_{SW}} [A], D = \frac{V_{OUT} - V_{IN}}{V_{OUT}}$$

Where D is the on-duty cycle of the switching regulator. A common choice is to set ΔI_L to about 30% of I_L AVE.

I_{L PK}≤ I_{CL} Check & I_{MIN} Define

The peak inductor current is given by the following equation:

$$I_{L_pk} = \frac{I_{OUT}}{\eta \times D'} + \frac{V_{IN} \times D}{2L \times f_{SW}} [A]$$

 $I_{L_pk} = I_{L_AVE} + \frac{\Delta I_L}{2} [A]$

	Texas
Y	INSTRUMENTS

2.2

2.2

www.ti.com

(5)

(2)

(3)

(4)

To prevent loss of regulation, ensure that the NMOS power switch current limit is greater than the worst-case peak inductor current in the target application.

Also make sure that the inductor saturation current is greater than the peak inductor current under the worst-case load transient, high ambient temperature and startup conditions. Refer to Table 2 for suggested inductors.

		••	
Model	Vendor	Dimensions LxWxH (mm)	D.C.R (max)
DO3314-472ML	COILCRAFT	3.3mm x 3.3mm x 1.4mm	320 mΩ
DO3316P-472ML	COILCRAFT	12.95mm x 9.4mm x 5.4mm	18 mΩ

Table 2	Suggested	Inductors	and	Their	Suppliers	
	Juggesteu	maucions	anu	IIICII	Suppliers	

INPUT CAPACITOR SELECTION

Due to the presence of an inductor, the input current waveform is continuous and triangular. So the input capacitor is less critical than output capacitor in boost applications. Typically, a 4.7 μ F to 10 μ F ceramic input capacitor is recommended on the VIN pin of the IC.

ICIN RMS Check

The RMS current in the input capacitor is given by the following equation:

$$I_{\text{CIN}_{\text{RMS}}} = \frac{\Delta I_{\text{L}}}{\sqrt{12}} [A]$$

The input capacitor should be capable of handling the RMS current.

OUTPUT CAPACITOR SELECTION

The output capacitor in a boost converter provides all the output current when the switch is closed and the inductor is charging. As a result, it sees very large ripple currents.

A ceramic capacitor of value 4.7 μ F to 10 μ F is recommended at the output. If larger amounts of capacitance are desired for improved line support and transient response, tantalum capacitors can be used.

I_{COUT_RMS} Check

The RMS current in the output capacitor is given by the following equation:

$$I_{\text{COUT}_\text{RMS}} = \sqrt{(1 - D) \left[I_{\text{OUT}}^2 \frac{D}{(1 - D)^2} + \frac{\Delta I_L^2}{12} \right]} [A]$$

(7)

(6)

The output capacitor should be capable of handling the RMS current.

The ESR and ESL of the output capacitor directly control the output ripple. Use capacitors with low ESR and ESL at the output for high efficiency and low ripple voltage. The output capacitor also affects the soft-start time (See SOFT-START FUNCTION AND SOFT-START CAPACITOR SELECTION). Table 3 shows suggested input and output capacitors.

ISTRUMENTS

FXAS

	00			
Model	Туре	Vendor	Voltage Rating	Case Size Inch (mm)
4.7 μF for C _{IN}				
C2012X5R0J475	Ceramic, X5R	TDK	6.3V	0805 (2012)
GRM21BR60J475	Ceramic, X5R	muRata	6.3V	0805 (2012)
JMK212BJ475	Ceramic, X5R	Taiyo-Yuden	6.3V	0805 (2012)
C2012X5R0J475K	Ceramic, X5R	TDK	6.3V	0603 (1608)
10 μF for C _{OUT}				
TMK316BJ106KL	Ceramic, X5R	Taiyo-Yuden	25V	1206 (3216)
12103D106KAT2A	Ceramic, X5R	AVX	25V	1210 (3225)

Table 3. Suggested C_{IN} and C_{OUT} Capacitors and Their Suppliers

SOFT-START FUNCTION AND SOFT-START CAPACITOR SELECTION

The LM4510 has a soft-start pin that can be used to limit the input inrush current. Connect a capacitor from SS pin to GND to set the soft-start period. Figure 27 describes the soft start process.

- Initial charging period: When the device is turned on, the control circuitry linearly regulating initial charge current charges V_{OUT} by limiting the inrush current.
- Soft-start period: After V_{OUT} reaches V_{IN} -0.7V (typ.), the device starts switching and the C_S is charged at a constant current of 11 μ A, ramping up to V_{IN}. This period ends when V_{SS} reaches V_{FB}. C_S should be large enough to ensure soft-start period ends after C_O is fully charged.

During the initial charging period, the required load current must be smaller than the initial charge current to ensure V_{OUT} reaches V_{IN} -0.7V (typ.).

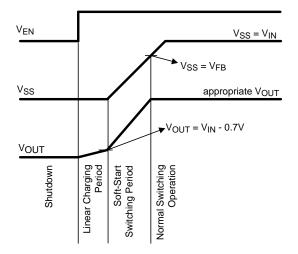


Figure 27. Soft Start Timing Diagram

C_S Selection

The soft-start time without load can be estimated as:

$$t_{SS} = \frac{C_{OUT} \times (V_{IN} - 0.7)}{I_{INIT_CHARGE}} + \frac{C_S \times V_{FB}}{I_{SS_CHARGE}} [sec]$$

(8)

Where the I_{INIT_CHARGE} is Initial Charging Current depending on V_{IN} and I_{SS_CHARGE} (11 µA (typ.)). Also, when selecting the fuse current rating, make sure the value is higher than the initial charging current.

COMPENSATION COMPONENT SELECTION

The LM4510 provides a compensation pin COMP to customize the voltage loop feedback. It is recommended that a series combination of R_C and C_{C1} be used for the compensation network, as shown in the typical application circuit. In addition, C_{C2} is used for compensating high frequency zeros.

(9)

(10)

SNVS533C - SEPTEMBER 2007 - REVISED MAY 2013

The series combination of R_C and C_{C1} introduces a pole-zero pair according to the following equations:

$$f_{PC} = \frac{1}{2\pi(R_{C} + R_{O})C_{C1}} [Hz]$$
$$f_{ZC} = \frac{1}{2\pi R_{C}C_{C1}} [Hz]$$

In addition, C_{C2} introduces a pole according to the following equation:

$$f_{PC2} = \frac{1}{2\pi (R_C //R_O) C_{C2}} [Hz]$$

Where R_0 is the output impedance of the error amplifier, approximately 1 M Ω , and amplifier voltage gain is typically 200 V/V depending on temperature and V_{IN}.

Refer to Table 4 for suggested soft start capacitor and compensation components.

Table 4. Suggested C_S and Compensation Components

Model	Туре	Vendor	Voltage Rating	Case Size Inch (mm)
(C _S) C1608C0G1E103J	Ceramic, X5R	TDK	6.3V	603 (1608)
(C1)TMK107SD222JA-T	Ceramic, X5R	Taiyo Yuden	25V	603 (1608)
(R _c) 9t06031A4642FBHFT	Resistor	Yageo Corporation	1/10W	603 (1608)

LAYOUT CONSIDERATIONS AND THERMAL MANAGEMENT

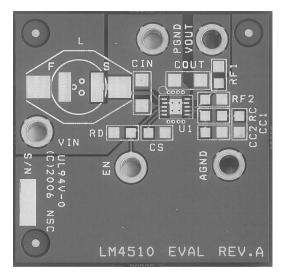


Figure 28. Evaluation Board Layout

High frequency switching regulators require very careful layout of components in order to get stable operation and low noise. All components must be as close as possible to the LM4510 device. Refer to Figure 28 as an example. Some additional guidelines to be observed:

- C_{IN} must be placed close to the device and connected directly from VIN to PGND pins. This reduces copper trace resistance, which affects the input voltage ripple of the device. For additional input voltage filtering, typically a 0.1 uF bypass capacitor can be placed between VIN and AGND. This bypass capacitor should be placed near the device closer than C_{IN}.
- C_{OUT} must also be placed close to the device and connected directly from VOUT to PGND pins. Any copper trace connections for the C_{OUT} capacitor can increase the series resistance, which directly affects output voltage ripple and makes noise during output voltage sensing.

www.ti.com

(11)

- All voltage-sensing resistors (R_{F1}, R_{F2}) should be kept close to the FB pin to minimize copper trace connections that can inject noise into the system. The ground connection for the voltage-sensing resistor should be connected directly to the AGND pin.
- 4. Trace connections made to the inductor should be minimized to reduce power dissipation, EMI radiation and increase overall efficiency. Also poor trace connection increases the ripple of SW.
- 5. C_S, C_{C1}, C_{C2}, R_C must be placed close to the device and connected to AGND.
- 6. The AGND pin should connect directly to the ground. Not connecting the AGND pin directly, as close to the chip as possible, may affect the performance of the LM4510 and limit its current driving capability. AGND and PGND should be separate planes and should be connected at a single point.
- 7. For better thermal performance, DAP should be connected to ground, but cannot be used as the primary ground connection. The PC board land may be modified to a "dog bone" shape to reduce SON thermal impedance. For detail information, refer to Application Note AN-1187.

FLASH/TORCH APPLICATION

LM4510 can be configured to drive white LEDs for the flash and torch functions. The flash/torch can be set up with the circuit shown in Figure 29 by using the resistor R_T to determine the current in Torch Mode and R_F to determine the current in Flash Mode. The amount of current can be estimated using the following equations:

$$I_{\text{Torch}} = \frac{V_{\text{FB}}}{R_{\text{T}}} [A]$$
$$I_{\text{Flash}} = \frac{V_{\text{FB}}}{R_{\text{T}} // R_{\text{F}}} [A]$$

L = 4.7 µH mm Everlight 47-23UWD/TR8 VIN SW VOUT EN Battery or LM4510 CIN COUT ower Source 4.7 µF FB 10 µF SS COMP Rт RF R_C 50Ω 12.4Ω ₹ 46.6k Cs PGND AGND C_{C} 10 nF 22 nF Ļ 0 Pull high for TORCH Pull high for FLASH O-

Figure 29. Flash/Torch Circuit Using LM4510

SNVS533C - SEPTEMBER 2007 - REVISED MAY 2013

REVISION HISTORY

Cł	nanges from Revision B (May 2013) to Revision C P	age
•	Changed layout of National Data Sheet to TI format	. 16

2-May-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
LM4510SD/NOPB	ACTIVE	WSON	DSC	10	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	L4510	Samples
LM4510SDX/NOPB	ACTIVE	WSON	DSC	10	4500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	L4510	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

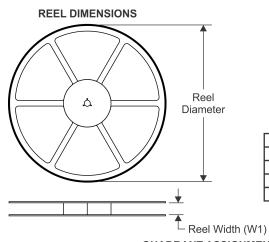
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

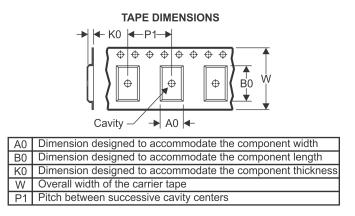
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

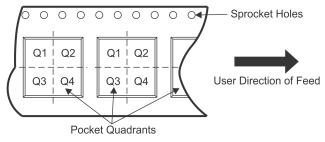
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

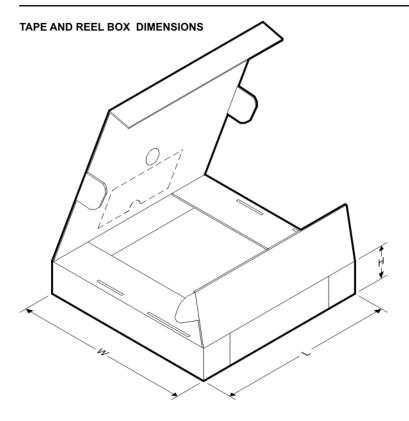

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

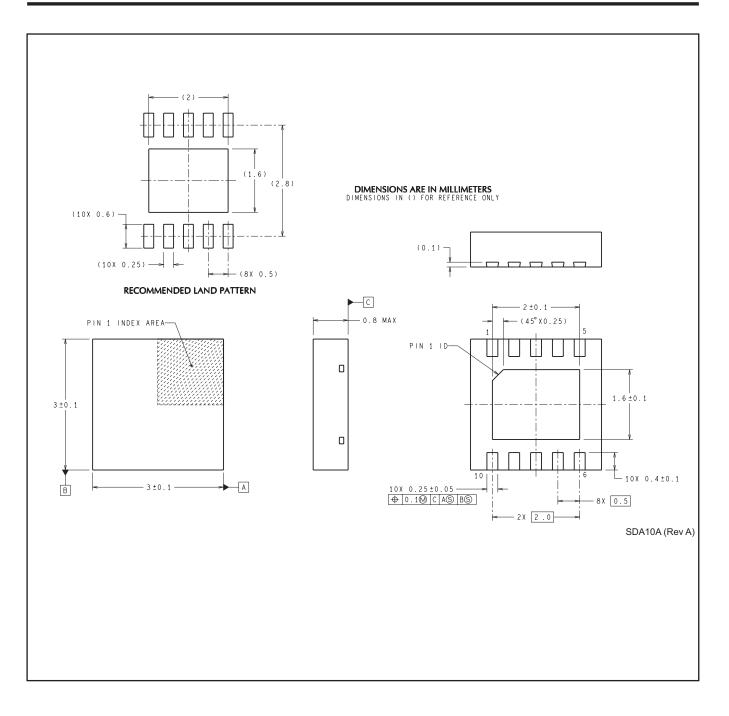

*/	Il dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	LM4510SD/NOPB	WSON	DSC	10	1000	178.0	12.4	3.3	3.3	1.0	8.0	12.0	Q1
	LM4510SDX/NOPB	WSON	DSC	10	4500	330.0	12.4	3.3	3.3	1.0	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

8-May-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4510SD/NOPB	WSON	DSC	10	1000	210.0	185.0	35.0
LM4510SDX/NOPB	WSON	DSC	10	4500	367.0	367.0	35.0

MECHANICAL DATA

DSC0010A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated