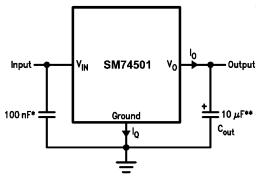


SM74501 Ultra-Low Quiescent Current LDO Voltage Regulator

Check for Samples: SM74501


FEATURES

- Renewable Energy Grade
- Ultra Low Quiescent Current (I_Q ≤ 15 µA for $I_0 = 100 \, \mu A$
- Fixed 5.0V with 50 mA Output
- ±2% Initial Output Tolerance
- ±3% Output Tolerance Over Line, Load, and **Temperature**
- Dropout Voltage Typically 200 mV @ I_O = 50
- **Reverse Battery Protection**
- -50V Reverse Transient Protection
- Internal Short Circuit Current Limit
- **Internal Thermal Shutdown Protection**
- 40V Operating Voltage Limit

DESCRIPTION

The SM74501 ultra-low quiescent current regulator features low dropout voltage and low current in the standby mode. With less than 15 µA quiescent current at a 100 µA load, the SM74501 is ideally suited for photovoltaic and other battery operated systems. The SM74501 retains all of the features that are common to low dropout regulators including a low dropout PNP pass device, short circuit protection, reverse battery protection, and thermal shutdown. The SM74501 has a 40V maximum operating voltage limit, a -40°C to +125°C operating temperature range, and ±3% output voltage tolerance over the entire output current, input voltage, and temperature range. The SM74501 is available in SOT-223 surface mount package.

Typical Application

^{*} Required if regulator is located more than 2 inches from power supply filter capacitor.

Connection Diagram

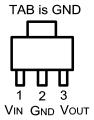


Figure 1. SOT-223 **Top View**

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

^{**} Required for stability. See Electrical Characteristics for required values. Must be rated over intended operating temperature range. Effective series resistance (ESR) is critical, see curve. Locate capacitor as close as possible to the regulator output and ground pins. Capacitance may be increased without bound.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

Input Voltage (Survival)	+60V, -50V
ESD Susceptibility (3)	2000V
Power Dissipation (4)	Internally limited
Junction Temperature (T _{Jmax})	150°C
Storage Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	260°C

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings.
- If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.
- Human body model, 100 pF discharge through a 1.5 k Ω resistor. The maximum power dissipation is a function of T_{Jmax} , θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{Jmax} T_A)/\theta_{JA}$. If this dissipation is exceeded, the die temperature will rise above 150°C and the SM74501 will go into thermal shutdown.

Operating Ratings

Operating Temperature Range	−40°C to +125°C
Maximum Operating Input Voltage	+40V
θ_{JA}	149°C/W
θ_{JC}	36°C/W

Electrical Characteristics for SM74501–3.3

 $V_{IN} = 14V$, $I_{O} = 10$ mA, $T_{J} = 25$ °C, unless otherwise specified. **Boldface** limits apply over entire operating temperature range

Parameter	Conditions	Min (1)	Typical	Max (1)	Units
AII SM74501-3.3	,		1		
Output Voltage		3.234	3.300	3.366	V
	$4.0V \le V_{IN} \le 26V$, $100 \ \mu A \le I_O \le 50 \ mA^{(3)}$	3.201	3.300	3.399	
Quiescent Current	$I_{O} = 100 \ \mu A, \ 8V \le V_{IN} \le 24V$		15	20	μΑ
	$I_{O} = 10 \text{ mA}, 8V \le V_{IN} \le 24V$		0.20	0.50	mA
	$I_{O} = 50 \text{ mA}, 8V \le V_{IN} \le 24V$		1.5	2.5	mA
Line Regulation	9V ≤ V _{IN} ≤ 16V		5	10	.,
	$6V \le V_{IN} \le 40V$, $I_O = 1 \text{ mA}$		10	30	mV
Load Regulation	100 μA ≤ I _O ≤ 5 mA		10	30	mV
	5 mA ≤ I _O ≤ 50 mA		10	30	
Dropout Voltage	Ι _Ο = 100 μΑ		0.05	0.10	V
	I _O = 50 mA		0.20	0.40	V
Short Circuit Current	$V_O = 0V$	65	120	250	mA
Outsid law adams	I _O = 30 mAdc and 10 mArms,		450		mΩ
Output Impedance	_f = 1000 Hz				
Output Noise Voltage	10 Hz-100 kHz		500		μV
Long Term Stability			20		mV/1000 Hr
Ripple Rejection	V _{ripple} = 1V _{rms} , _{fripple} = 120 Hz	-40	-60		dB
Reverse Polarity	$R_L = 500\Omega$, $T = 1$ ms	-50	-80		V
Transient Input Voltage					

- Datasheet min/max specification limits are specified by design, test, or statistical analysis.
- Typicals are at 25°C (unless otherwise specified) and represent the most likely parametric norm.
- (3)To ensure constant junction temperature, pulse testing is used.

Electrical Characteristics for SM74501-3.3 (continued)

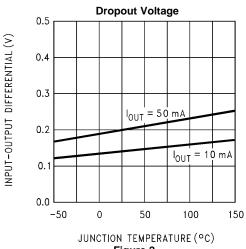
 V_{IN} = 14V, I_O = 10 mA, T_J = 25°C, unless otherwise specified. **Boldface** limits apply over entire operating temperature range

Parameter	Conditions	Min (1)	Typical	Max (1)	Units
Output Voltage with	$V_{IN} = -15V, R_L = 500\Omega$		0.00	-0.30	V
Reverse Polarity Input					
Maximum Line Transient	$R_L = 500\Omega, V_O \le 3.63V, T = 40ms$	60			V
Output Bypass Capacitance (C _{OUT}) ESR	$C_{OUT} = 22\mu F$ $0.1\text{mA} \le I_{OUT} \le 50\text{mA}$	0.3		8	Ω

Electrical Characteristics for SM74501-5.0

 $V_{IN} = 14V$, $I_{O} = 10$ mA, $T_{J} = 25$ °C, unless otherwise specified. **Boldface** limits apply over entire operating temperature range

Parameter	Conditions	Min (1)	Typical (2)	Max (1)	Units
SM74501-5.0		I			
Output Voltage		4.90	5.00	5.10	
	$5.5V \le V_{IN} \le 26V$, $100 \mu A \le I_O \le 50 \text{ mA}^{(3)}$	4.85	5.00	5.15	V
Quiescent Current	$I_{O} = 100 \ \mu\text{A}, \ 8\text{V} \le \text{V}_{IN} \le 24\text{V}$		9	15	μA
	$I_{O} = 10 \text{ mA}, 8V \le V_{IN} \le 24V$		0.20	0.50	mA
	$I_{O} = 50 \text{ mA}, 8V \le V_{IN} \le 24V$		1.5	2.5	mA
Line Regulation	9V ≤ V _{IN} ≤ 16V		5	10	\/
	6V ≤ V _{IN} ≤ 40V, I _O = 1 mA		10	30	mV
Load Regulation	100 μA ≤ I _O ≤ 5 mA		10	30	>/
	5 mA ≤ I _O ≤ 50 mA		10	30	mV
Dropout Voltage	I _O = 100 μA		0.05	0.10	V
	I _O = 50 mA		0.20	0.40	V
Short Circuit Current	V _O = 0V	65	120	250	mA
Outsid lass a desire	I _O = 30 mAdc and 10 mArms,		450		mΩ
Output Impedance	_f = 1000 Hz				
Output Noise Voltage	10 Hz-100 kHz		500		μV
Long Term Stability			20		mV/1000 Hr
Ripple Rejection	V _{ripple} = 1V _{rms} , _{fripple} = 120 Hz	-40	-60		dB
Reverse Polarity	$R_L = 500\Omega$, $T = 1$ ms	-50	-80		V
Transient Input Voltage					
Output Voltage with	$V_{IN} = -15V, R_L = 500\Omega$		0.00	-0.30	V
Reverse Polarity Input					
Maximum Line Transient	$R_L = 500\Omega, V_O \le 5.5V, T = 40ms$	60			V
Output Bypass Capacitance (C _{OUT}) ESR	$C_{OUT} = 10\mu F$ $0.1mA \le I_{OUT} \le 50mA$	0.3		8	Ω


⁽¹⁾ Datasheet min/max specification limits are specified by design, test, or statistical analysis.

⁽²⁾ Typicals are at 25°C (unless otherwise specified) and represent the most likely parametric norm.

⁽³⁾ To ensure constant junction temperature, pulse testing is used.

Typical Performance Characteristics

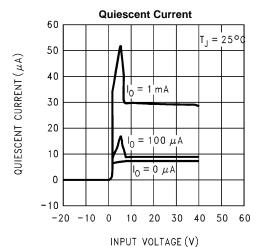
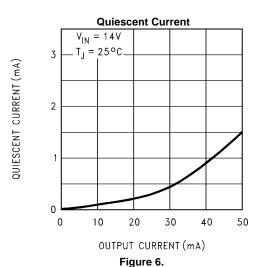
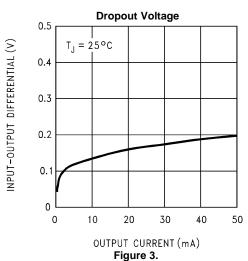
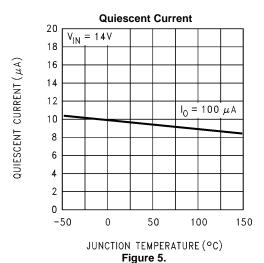
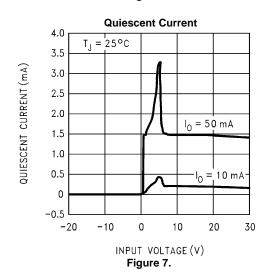
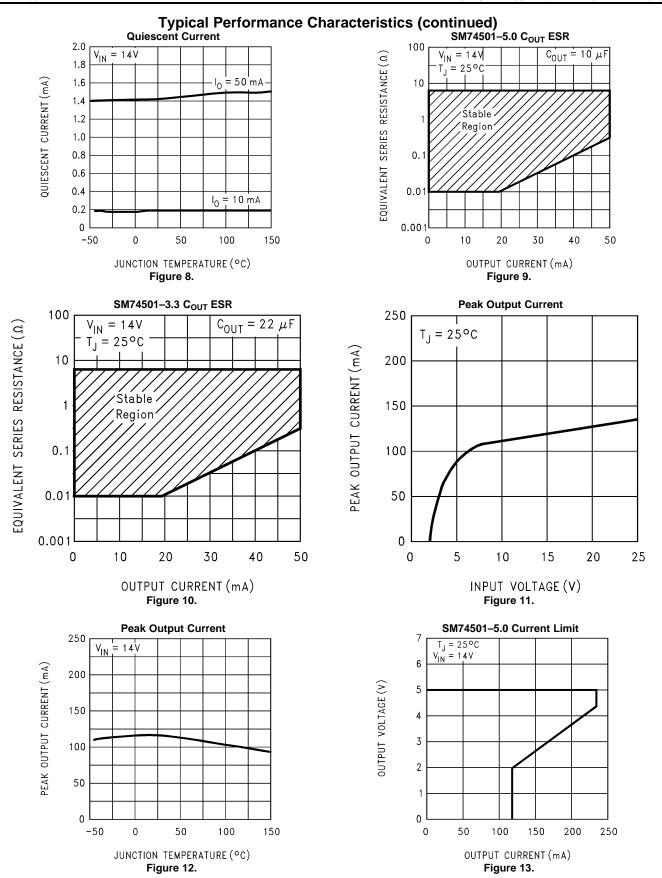
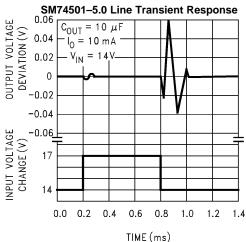
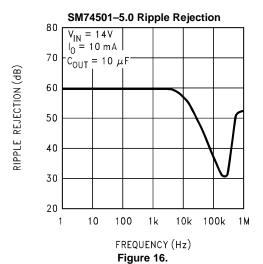






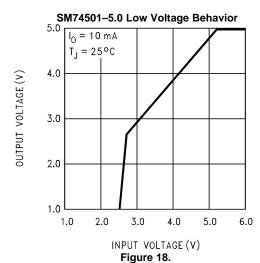
Figure 4.



Submit Documentation Feedback


Copyright © 2011-2013, Texas Instruments Incorporated





Typical Performance Characteristics (continued)

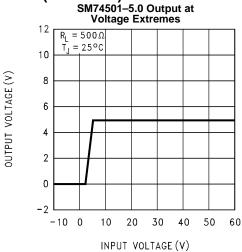
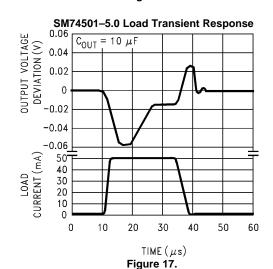



Figure 15.

SM74501-5.0 Output Impedance

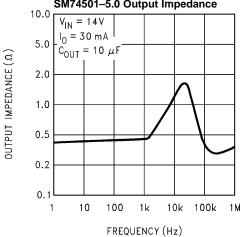


Figure 19.

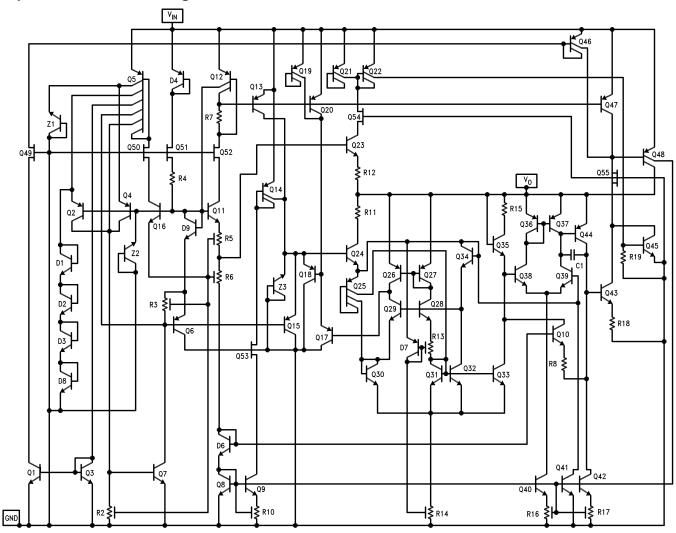
Submit Documentation Feedback

APPLICATIONS INFORMATION

Unlike other PNP low dropout regulators, the SM74501 remains fully operational to 40V. Owing to power dissipation characteristics of the available packages, full output current cannot be ensured for all combinations of ambient temperature and input voltage. As an example, consider an SM74501–5.0 operating at 25°C ambient. Using the formula for maximum allowable power dissipation given in $^{(1)}$, we find that $P_{Dmax} = 839 \text{mW}$ at 25°C. Including the small contribution of the quiescent current to total power dissipation the maximum input voltage (while still delivering 50 mA output current) is 20.9V. The SM74501–5.0 will go into thermal shutdown if it attempts to deliver full output current with an input voltage of more than 20.9V. Similarly, at 40V input and 25°C ambient the SM74501–5.0 can deliver 21.4 mA maximum.

Under conditions of higher ambient temperatures, the voltage and current calculated in the previous examples will drop. For instance, at the maximum ambient of 125°C the SM74501–5.0 can only dissipate 167 mW, limiting the input voltage to 8.2V for a 50 mA load, or 2.3 mA output current for a 40V input.

The junction to ambient thermal resistance θ_{JA} rating has two distinct components: the junction to case thermal resistance rating θ_{JC} ; and the case to ambient thermal resistance rating θ_{CA} . The relationship is defined as: $\theta_{JA} = \theta_{JC} + \theta_{CA}$.


While the SM74501 has an internally set thermal shutdown point of typically 160°C, this is intended as a safety feature only. Continuous operation near the thermal shutdown temperature should be avoided as it may have a negative affect on the life of the device.

While the SM74501 maintains regulation to 60V, it will not withstand a short circuit above 40V because of safe operating area limitations in the internal PNP pass device. Above 60V the SM74501 will break down with catastrophic effects on the regulator and possibly the load as well. Do not use this device in a design where the input operating voltage may exceed 40V, or where transients are likely to exceed 60V.

⁽¹⁾ The maximum power dissipation is a function of T_{Jmax} , θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{Jmax} - T_A)/\theta_{JA}$. If this dissipation is exceeded, the die temperature will rise above 150°C and the SM74501 will go into thermal shutdown.

Equivalent Schematic Diagram

www.ti.com

REVISION HISTORY

Changes from Revision A (April 2013) to Revision B		
•	Changed layout of National Data Sheet to TI format	. 7

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>